Share:


Likelihood of impact events in transport networks considering road conditions, traffic and routing elements properties

    Alfred Strauss Affiliation
    ; Thomas Moser Affiliation
    ; Christian Honeger Affiliation
    ; Panagiotis Spyridis Affiliation
    ; Dan M. Frangopol Affiliation

Abstract

A large number of transport infrastructure equipment are located along the driving lanes of roadways, which must be secured by restraint systems. Among others, the different road lanes must be adequately separated from each other. The investigations reported herein aim to provide a probabilistic approach for the departure of motor vehicles from their intended lane and impact oν restraint systems. Currently, evaluations of the road infrastructure against possible accidents are mostly focused on the resistance side. This contribution, however, intends to address the action side, focusing in particular on the probability of impact of vehicles on the road furniture. The main parameters taken into account are the geometry of the road and the traffic composition and characteristics. The objective of this research is to develop an analysis tool for the probability-based assessment of vehicles departing from their driving lane. The analysis tool for the determination of the likelihood of impact events in transport networks, requires to define (a) of the alignment (longitudinal inclination, transverse inclination, and curvature of the lanes), (b) of the pavement conditions (lane grooves, road grip, and pavement cracks etc.), and (c) of the traffic composition as significant input parameters. These were investigated together with the road infrastructure operators. A newly introduced methodology is presented herein taking into account the above mentioned parameters and factoring in characteristic properties in order to assess the fragility of the infrastructure sub-system. The evaluation is based on either road engineering physics or expert judgements. The method is incorporated in a spreadsheet tool, which is also presented, the feasibility of this tool is demonstrated, and sensitivities of the assessment process are evaluated and discussed.

Keyword : risk analysis, sensitivity, road conditions, routing elements

How to Cite
Strauss, A., Moser, T., Honeger, C., Spyridis, P., & Frangopol, D. M. (2020). Likelihood of impact events in transport networks considering road conditions, traffic and routing elements properties. Journal of Civil Engineering and Management, 26(1), 95-112. https://doi.org/10.3846/jcem.2020.11826
Published in Issue
Jan 29, 2020
Abstract Views
2264
PDF Downloads
762
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Officials (AASHTO). (2018). Manual for bridge evaluation (3rd ed.). Washington, DC.

Ang, A. H. & Tang, W. H. (2007). Probability concepts in engineering planning and design. Wiley.

Autobahnen- und Schnellstraßen-Finanzierungs-Aktiengesellschaft (ASFINAG). (2015). Planungshandbuch Straße – Bau Technische Richtlinie [Planning Manual Road – Construction Technical Guideline]. Austria’s Motorways and Expressways Financing Corporation, Vienna.

Benbow, E., & Wright, A. (2017). Summary of deliverables 1 and 2 of the PREMIUM project and the work required to achieve the recommendations. In Conference of European Directors of Roads (CEDR).

ERA-NET ROAD. (2012). Asset service condition assessment methodology (ASCAM) deliverable No. 4 “Inventory road equipment management practices”.

Federal Ministry of Transportation, Building and Urban Development. (2011). Richtlinie zur Nachrechnung von Strassenbrücken im Bestand [Guideline for the recalculation of existing road bridges]. Department for Road Construction.

International Organization for Standardization (ISO). (2010). ISO-13822: Basis for design of structures – Assessment of existing structures. Geneva.

Kim, J. J. (2018). Development of empirical fragility curves in earthquake engineering considering nonspecific damage information. Advances in Civil Engineering, 6209137. https://doi.org/10.1155/2018/6209137

Linstone, H. A., & Turoff, M. (1975). The Delphi method – techniques and applications. Addison-Wesley.

Meyer, M. A., & Booker, J. M. (2001). Eliciting and analyzing expert judgment: a practical guide. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718485

Nederlands Normalisatie Instituut. (2011). NEN 8700 (nl) – Assessment of existing structures in case of reconstruction and disapproval – basic rules.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (1998a). RVS 05.04.33: Ausführung, Abnahme, Betrieb, Instandhaltung – Verkehrslichtsignalanlagen [Execution, acceptance, operation, maintenance or traffic light signal systems]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (1998b). RVS 05.04.34: Abnahme- und Prüfprotokoll - Verkehrslichtsignalanlagen [Acceptance and test protocol for traffic light signal systems]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2005a). RVS 08.23.05: Straßenausrüstung – Leitschienen aus Stahl [Road equipment – steel guard rails]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2005b). RVS 08.23.06: Straßenausrüstung – Leitwände aus Beton [Road equipment – Concrete guide walls]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2007a). RVS 05.02.31: Leiteinrichtungen, Rückhaltesysteme – Anforderungen und Aufstellung [Guiding equipment, restraint systems – Requirements and erection]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2007b). RVS 08.09.02: Oberflächenschutz von Stahl und Aluminium [Surface protection of steel and aluminium]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2009a). RVS 05.02.11: Verkehrszeichen und Ankündigungen – Anforderungen und Aufstellungen [Traffic signs and advertisements – Requirements and specifications]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2009b). RVS 08.23.01: Straßenausrüstung – Verkehrszeichen Prüfungen (Prüfverfahren – Zulas-sung/Abnahme) [Road equipment – Traffic sign tests]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2009c). RVS 08.23.07: Straßenausrüstung – VLSA [Road equipment – Traffic light signal systems]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2009d). RVS 08.10.04: Brückenausrüstung – Leiteinrichtungen – ersetzt durch LB Infrastruktur [Bridge equipment – guidance devices]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2013a). RVS 12.01.12: Standards in der betrieblichen Erhaltung von Landesstraßen [Standards in the operational maintenance of national roads]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2013b). RVS 13.03.51: Überwachung, Kontrolle und Prüfung von Kunstbauten – Wegweiserbrücken [Monitoring, control and inspection of engineering structures – signpost bridges]. Vienna.

Österreichische Forschungsgesellschaft Straße-Schiene-Verkehr (FSV). (2018). Standardisierte Leistungsbeschreibung Verkehr und Infrastruktur LB-VI [Standardised performance descriptions for traffic and infrastructure]. Vienna.

Schneider, J. (2006). Introduction to safety and reliability of structures. IABSE.

Sjögren, L., His, A., Edvardsson, K., Wennström, J., Haider, M., Casse, C., Van Geem, C., Benbow, E., Wright, A., Žnidarič, A., & Kokot, D. (2013). Overall road asset performance. ERANET ROAD. Retrieved from https://www.diva-portal.org/smash/get/diva2:814340/FULLTEXT01.pdf

Spielhofer, R. D. (2014). Collaborative project FP7-285119. Advanced and cost effective road infrastructure construction, management and maintenance. Deliverable D 4.2 Monitoring of Road Inventory.

Spielhofer, R., Oldfield, M., Britton, C., Levine, H., Brozek, B., Weninger-Vycudil, A., Lepert, P., Mladenovic, G., Le Bars, G., Pohu, J., & Litzka, H. (2015). Cross-asset risk assessment (XARA) – Risk framework and modelling specifications, Deliverable D1.2, Deliverable D2.1. In Conference of European Directors of Roads (CEDR).

Spielhofer, R. D., Osichenko, D., Leal, D., Benbow, E., Wright, A., & Morgan, P. (2016). Identifying the key characteristics for noise barriers condition measurements – Deliverable D1d and D2d. In Conference of European Directors of Roads (CEDR).

Spielhofer, R. D., Osichenko, D., Leal, D., Benbow, E., & Wright, A. (2017a). Identifying the key characteristics for vehicle restraint system condition measurements – Deliverable D1a and D2a. In Conference of European Directors of Roads (CEDR).

Spielhofer, R. D., Osichenko, D., Leal, D., Benbow, E., & Wright, A. (2017b). Identifying the key characteristics for road sign condition measurements – Deliverable D1b and D2b. In Conference of European Directors of Roads (CEDR).

Strauss, A., Wendner, R., Bergmeister, K., Reiterer, M., & Horvatits, J. (2011). Monitoring and influence lines based performance indicators. Beton- und Stahlbetonbau, 106(4), 231-240. https://doi.org/10.1002/best.201100003

Strauss, A., Vidovic, A., Zambon, I., Dengg, F., & Matos, J. C. (2016). Performance indicators for roadway bridges. In Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks – Proceedings of the 8th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2016 (pp. 965-970). Taylor & Francis Group.

Troutbeck, R. (Ed.). (2013). Transportation research circular E-C172: Roadside safety design and devices – International workshop. Roadside Safety Design Committee.

Weninger-Vycudil, A., Litzka, J., Schiffmann, F., Lindenmann, H. P., Haberl, J., Scazziga, I., Rodriguez, M., Hueppi, A., & Jamnik, J. (2009). Maintenance backlog estimation and use. Road Eranet.