Scientometric review of construction project schedule studies: trends, gaps and potential research areas
Abstract
Scheduling plays a fundamental role in construction projects’ success and thus has drawn attention from both academic researchers and industry practitioners. A large number of research articles tend to solve emerging challenges in construction project schedule (CPS). Therefore, there is a strong need of systematic review on existing studies. In this study, a total of 332 articles were retrieved from Scopus database using title, abstract and keywords with respect to CPS and filtered by document type, language type and abstract content. In particular, science mapping approach was adopted to analyse selected journal articles. These articles were examined using three sequential processes, including bibliometric search, scientometric analysis, and in-depth qualitative discussion. It could demonstrate the most influential journals, researchers, published articles, and active countries/regions in this area. In addition, major CPS knowledge areas were identified and summarized as CPS constructability, applications of variety of CPS methods, CPS optimization models and algorithms, identification and quantification of schedule risks and uncertainties, CPS performance management, and adopting new emerging CPS technologies and methods. Furthermore, knowledge gaps and future potential research directions were also discussed in detail. Finally, a comprehensive CPS framework was proposed as a sound reference in future research.
Keyword : construction project schedule (CPS), scheduling methods, schedule uncertainties, resource-constrained scheduling, schedule optimization, scientometric analysis, bibliometric
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abd El Razek, R. H., Diab, A. M., Hafez, S. M., & Aziz, R. F. (2010). Time-cost-quality trade-off software by using simplified Genetic algorithm for typical-repetitive construction projects. World Academy of Science, Engineering and Technology, 61, 312–321.
Abdirad, H., & Pishdad-Bozorgi, P. (2014). Trends of assessing BIM implementation in construction research. In 2014 International Conference on Computing in Civil and Building Engineering (pp. 496–503). Orlando, Florida, United States. https://doi.org/10.1061/9780784413616.062
Abou-Ibrahim, H., Hamzeh, F., Zankoul, E., Munch Lindhard, S., & Rizk, L. (2019). Understanding the planner’s role in lookahead construction planning. Production Planning and Control, 30(4), 271–284. https://doi.org/10.1080/09537287.2018.1524163
Acemoglu, D., & Restrepo, P. (2019). The wrong kind of AI? Artificial intelligence and the future of labor demand. Cambridge Journal of Regions, Economy and Society. https://doi.org/10.1093/cjres/rsz022
Agarwal, R., Chandrasekaran, S., & Sridhar, M. (2016). Imagining construction’s digital future. McKinsey Productivity Sciences Center. https://www.mckinsey.com/industries/capitalprojects-and-infrastructure/our-insights/imagining-constructions-digital-future
Aghaei Chadegani, A., Salehi, H., Yunus, M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 9(5), 18–26. https://doi.org/10.5539/ass.v9n5p18
Akinci, B., Fischer, M., & Kunz, J. (2002). Automated generation of work spaces required by construction activities. Journal of Construction Engineering and Management, 128(4), 306–315. https://doi.org/10.1061/(ASCE)0733-9364(2002)128:4(306)
Al Haj, R. A., & El-Sayegh, S. M. (2015). Time-cost optimization model considering float-consumption impact. Journal of Construction Engineering and Management, 141(5), 04015001. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000966
Al Nasseri, H., & Aulin, R. (2016). Enablers and barriers to project planning and scheduling based on construction projects in Oman. Journal of Construction in Developing Countries, 21(2), 1–20. https://doi.org/10.21315/jcdc2016.21.2.1
Al Nasseri, H., Widen, K., & Aulin, R. (2016). A taxonomy of planning and scheduling methods to support their more efficient use in construction project management. Journal of Engineering, Design and Technology, 14(3), 580–601. https://doi.org/10.1108/JEDT-11-2013-0078
Ali, M. M., & Elazouni, A. (2009). Finance-based CPM/LOB scheduling of projects with repetitive non-serial activities. Construction Management and Economics, 27(9), 839–856. https://doi.org/10.1080/01446190903191764
Alias, S. E., & Ismail, N. (2012). The usage of critical path method software in Malaysian construction. International Journal of Knowledge, Culture and Change Management, 11(5), 77–88. https://doi.org/10.18848/1447-9524/CGP/v11i05/50198
Aliverdi, R., Moslemi Naeni, L., & Salehipour, A. (2013). Monitoring project duration and cost in a construction project by applying statistical quality control charts. International Journal of Project Management, 31(3), 411–423. https://doi.org/10.1016/j.ijproman.2012.08.005
AlNasseri, H., & Aulin, R. (2015). Assessing understanding of planning and scheduling theory and practice on construction projects. EMJ – Engineering Management Journal, 27(2), 58–72. https://doi.org/10.1080/10429247.2015.1035963
Alsehaimi, A. O., Fazenda, P. T., & Koskela, L. (2014). Improving construction management practice with the Last Planner System: A case study. Engineering, Construction and Architectural Management, 21(1), 51–64. https://doi.org/10.1108/ECAM-03-2012-0032
Amiri, M. J. T., Haghighi, F., Eshtehardian, E., Hematian, M., & Kordi, H. (2017). Optimization of time and cost in critical chain project scheduling problem using genetic algorithm. Journal of Engineering and Applied Sciences, 12(4), 871–876.
Anderson, K., Kim, H., Lee, S., & Hildreth, J. (2013). Generating construction schedules through automatic data extraction using open BIM (building information modeling) technology. Automation in Construction, 35, 285–295. https://doi.org/10.1016/j.autcon.2013.05.020
Ashuri, B., & Tavakolan, M. (2012). Fuzzy enabled hybrid genetic algorithm-particle swarm optimization approach to solve TCRO problems in construction project planning. Journal of Construction Engineering and Management, 138(9), 1065–1074. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000513
Bakkalbasi, N., Bauer, K., Glover, J., & Wang, L. (2006). Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomedical Digital Libraries, 3(1), 7. https://doi.org/10.1186/1742-5581-3-7
Bakry, I., Moselhi, O., & Zayed, T. (2016). Optimized scheduling and buffering of repetitive construction projects under uncertainty. Engineering, Construction and Architectural Management, 23(6), 782–800. https://doi.org/10.1108/ECAM-05-2014-0069
Ballesteros-Pérez, P., Elamrousy, K. M., & González-Cruz, M. C. (2019). Non-linear time-cost trade-off models of activity crashing: Application to construction scheduling and project compression with fast-tracking. Automation in Construction, 97, 229–240. https://doi.org/10.1016/j.autcon.2018.11.001
Băncescu, M. (2016). Controlling project schedule progress, using control charts. Cybernetics and Systems, 47(7), 602–615. https://doi.org/10.1080/01969722.2016.1211883
Bankar, R. S., & Lihitkar, S. R. (2019). Science mapping and visualization tools used for bibliometric and scientometric studies: A comparative study. Journal of Advancements in Library Sciences, 6(1), 382–394.
Bansal, V. K., & Pal, M. (2009). Construction schedule review in GIS with a navigable 3D animation of project activities. International Journal of Project Management, 27(5), 532–542. https://doi.org/10.1016/j.ijproman.2008.07.004
Baqerin, M. H., Shafahi, Y., & Kashani, H. (2016). Application of Weibull analysis to evaluate and forecast schedule performance in repetitive projects. Journal of Construction Engineering and Management, 142(2), 04015058. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001040
Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., Owolabi, H. A., Alaka, H. A., & Pasha, M. (2016). Big Data in the construction industry: A review of present status, opportunities, and future trends. Advanced Engineering Informatics, 30(3), 500–521. https://doi.org/10.1016/j.aei.2016.07.001
Bonnal, P., Baudin, M., & De Jonghe, J. (2013). Merging PDM, RSM and LSM scheduling approaches: Into a single construction project scheduling system. Journal of Modern Project Management, 1(2), 6–17.
Bragadin, M. A., & Kähkönen, K. (2016). Schedule health assessment of construction projects. Construction Management and Economics, 34(12), 875–897. https://doi.org/10.1080/01446193.2016.1205751
Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., & Yates, J. K. (2009). Construction project scheduling with time, cost, and material restrictions using fuzzy mathematical models and critical path method. Journal of Construction Engineering and Management, 135(10), 1096–1104. https://doi.org/10.1061/(ASCE)0733-9364(2009)135:10(1096)
Chan, G., Li, H., Skitmore, M., & Huang, T. (2015). A 4D automatic simulation tool for construction resource planning: A case study. Engineering, Construction and Architectural Management, 22(5), 536–550. https://doi.org/10.1108/ECAM-07-2014-0093
Chang, K., & Chen, H. (2015). A cloud-based system framework for storage and analysis on Big Data of massive BIMs. In Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC 2015). Oulu, Finland. https://doi.org/10.22260/ISARC2015/0001
Chen, Y., Feng, C., Wang, Y., & Wu, H. (2011). Using bim model and genetic algorithms to optimize the crew assignment for construction project planning. International Journal of Technology, 2(3), 179–188.
Cheng, M. Y., Prayogo, D., & Tran, D. H. (2016). Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search. Journal of Computing in Civil Engineering, 30(3), 04015036. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000512
Chevallier, N., & Russell, A. D. (1998). Automated schedule generation. Canadian Journal of Civil Engineering, 25(6), 1059–1077. https://doi.org/10.1139/l98-029
Choudhry, R. M., Aslam, M. A., & Arain, F. M. (2014). Cost and schedule risk analysis of bridge construction in Pakistan: Establishing risk guidelines. Journal of Construction Engineering and Management, 140(7), 04014020. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000857
Christodoulou, S. E. (2010). Scheduling resource-constrained projects with ant colony optimization artificial agents. Journal of Computing in Civil Engineering, 24(1), 45–55. https://doi.org/10.1061/(ASCE)0887-3801(2010)24:1(45)
Christodoulou, S. E., Tezias, E. S., & Galaras, K. A. (2012). Resource-constrained scheduling of construction projects and simulation of the entropy impact on a project’s duration and cost. International Journal of Project Organisation and Management, 4(4), 322–338. https://doi.org/10.1504/IJPOM.2012.050328
Cobo, M. J., López-Herrera, A. G., Herrera‐Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525
Daniel, E. I., Pasquire, C., Dickens, G., & Ballard, H. G. (2017). The relationship between the last planner® System and collaborative planning practice in UK construction. Engineering, Construction and Architectural Management, 24(3), 407–425. https://doi.org/10.1108/ECAM-07-2015-0109
Ding, L., Zhou, Y., Wang, X., Truijens, M., & Luo, H. (2015). Applicability of 4D modeling for resource allocation in mega liquefied natural gas plant construction. Automation in Construction, 50(C), 50–63. https://doi.org/10.1016/j.autcon.2014.10.016
Dochy, F. (2006). A guide for writing scholarly articles or reviews for the Educational Research Review. Educational Research Review, 4.
El-Abbasy, M. S., Elazouni, A., & Zayed, T. (2016). MOSCOPEA: Multi-objective construction scheduling optimization using elitist non-dominated sorting genetic algorithm. Automation in Construction, 71(Part 2), 153–170. https://doi.org/10.1016/j.autcon.2016.08.038
El-Rayes, K., & Jun, D. H. (2009). Optimizing resource leveling in construction projects. Journal of Construction Engineering and Management, 135(11), 1172–1180. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000097
Elbeltagi, E., Ammar, M., Sanad, H., & Kassab, M. (2016). Overall multiobjective optimization of construction projects scheduling using particle swarm. Engineering, Construction and Architectural Management, 23(3), 265–282. https://doi.org/10.1108/ECAM-11-2014-0135
Eleftheriadis, S., Mumovic, D., & Greening, P. (2017). Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renewable and Sustainable Energy Reviews, 67, 811–825. https://doi.org/10.1016/j.rser.2016.09.028
Eshtehardian, E., Afshar, A., & Abbasnia, R. (2009). Fuzzy-based MOGA approach to stochastic time-cost trade-off problem. Automation in Construction, 18(5), 692–701. https://doi.org/10.1016/j.autcon.2009.02.001
Ezeldin, A. S., & Soliman, A. (2009). Hybrid time-cost optimization of nonserial repetitive construction projects. Journal of Construction Engineering and Management, 135(1), 42–55. https://doi.org/10.1061/(ASCE)0733-9364(2009)135:1(42)
Faghihi, V., Nejat, A., Reinschmidt, K. F., & Kang, J. H. (2015). Automation in construction scheduling: a review of the literature. International Journal of Advanced Manufacturing Technology, 81(9–12), 1845–1856. https://doi.org/10.1007/s00170-015-7339-0
Faghihi, V., Reinschmidt, K. F., & Kang, J. H. (2014). Construction scheduling using Genetic Algorithm based on Building Information Model. Expert Systems with Applications, 41(16), 7565–7578. https://doi.org/10.1016/j.eswa.2014.05.047
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google scholar: strengths and weaknesses. The FASEB Journal, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF
Faniran, O., Love, P., & Smith, J. (2000). Effective front-end project management – a key element in achieving project success in developing countries. In Proceedings of Construction Development Conference.
Gannon, T., Feng, P., & Sitzabee, W. (2012). Reliable schedule forecasting in federal design-build facility procurement. Lean Construction Journal, 1–14.
García-Nieves, J. D., Ponz-Tienda, J. L., Salcedo-Bernal, A., & Pellicer, E. (2018). The multimode resource-constrained project scheduling problem for repetitive activities in construction projects. Computer-Aided Civil and Infrastructure Engineering, 33(8), 655–671. https://doi.org/10.1111/mice.12356
Gebrehiwet, T., & Luo, H. (2019). Risk level evaluation on construction project lifecycle using fuzzy comprehensive evaluation and TOPSIS. Symmetry, 11(1), 12. https://doi.org/10.3390/sym11010012
Ghoddousi, P., Ansari, R., & Makui, A. (2017). An improved robust buffer allocation method for the project scheduling problem. Engineering Optimization, 49(4), 718–731. https://doi.org/10.1080/0305215X.2016.1206534
Giran, O., Temur, R., & Bekdaş, G. (2017). Resource constrained project scheduling by harmony search algorithm. KSCE Journal of Civil Engineering, 21(2), 479–487. https://doi.org/10.1007/s12205-017-1363-6
González, V., Alarcón, L. F., & Molenaar, K. (2009). Multiobjective design of Work-In-Process buffer for scheduling repetitive building projects. Automation in Construction, 18(2), 95–108. https://doi.org/10.1016/j.autcon.2008.05.005
Gwak, H. S., Son, S. H., Park, Y. J., & Lee, D. E. (2016). Exact time-cost tradeoff analysis in concurrency-based scheduling. Journal of Construction Engineering and Management, 142(10), 04016054. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001164
Hamzeh, F., Ballard, G., & Tommelein, I. D. (2012). Rethinking lookahead planning to optimize construction workflow. Lean Construction Journal, 15–34.
Han, K. K., & Golparvar-Fard, M. (2017). Potential of big visual data and building information modeling for construction performance analytics: An exploratory study. Automation in Construction, 73, 184–198. https://doi.org/10.1016/j.autcon.2016.11.004
Hanagodimath, A. V., Rajashekarswamy, H. M., & Parate, H. R. (2016). Project performance in real time construction industry – A case study. International Journal of Civil Engineering and Technology, 7(5), 93–102.
Hardin, B., & McCool, D. (2015). BIM and construction management: proven tools, methods, and workflows. John Wiley & Sons.
Harty, C., Goodier, C. I., Soetanto, R., Austin, S., Dainty, A. R., & Price, A. D. (2007). The futures of construction: a critical review of construction future studies. Construction Management and Economics, 25(5), 477–493. https://doi.org/10.1080/01446190600879117
He, Q., Wang, G., Luo, L., Shi, Q., Xie, J., & Meng, X. (2017). Mapping the managerial areas of Building Information Modeling (BIM) using scientometric analysis. International Journal of Project Management, 35(4), 670–685. https://doi.org/10.1016/j.ijproman.2016.08.001
Hosseini, M. R., Martek, I., Zavadskas, E. K., Aibinu, A. A., Arashpour, M., & Chileshe, N. (2018). Critical evaluation of offsite construction research: A Scientometric analysis. Automation in Construction, 87, 235–247. https://doi.org/10.1016/j.autcon.2017.12.002
Hsiau, H. J., & Lin, C. W. R. (2009). A fuzzy pert approach to evaluate plant construction project scheduling risk under uncertain resources capacity. Journal of Industrial Engineering and Management, 2(1), 31–47. https://doi.org/10.3926/jiem.2009.v2n1.p31-47
Hsie, M., Chang, C. J., Yang, I. T., & Huang, C. Y. (2009). Resource-constrained scheduling for continuous repetitive projects with time-based production units. Automation in Construction, 18(7), 942–949. https://doi.org/10.1016/j.autcon.2009.04.006
Huang, K. M., Yang, B., Lee, C. H., & Chiu, C. T. (2014). Incorporating lost productivity calculation into delay analysis for construction projects. KSCE Journal of Civil Engineering, 18(2), 380–388. https://doi.org/10.1007/s12205-014-0128-8
Indhu, B., & Farhan, M. (2015). Analysis of probabilistic times in a construction project using Monte Carlo simulation technique. International Journal of Applied Engineering Research, 10(10), 26463–26474.
Jacsó, P. (2005). Google Scholar: the pros and the cons. Online Information Review, 29(2), 208–214. https://doi.org/10.1108/14684520510598066
Jaskowski, P., & Biruk, S. (2018). Reducing renewable resource demand fluctuation using soft precedence relations in project scheduling. Journal of Civil Engineering and Management, 24(4), 355–363. https://doi.org/10.3846/jcem.2018.3043
Jha, K. N., & Chockalingam, C. T. (2011). Prediction of schedule performance of Indian construction projects using an artificial neural network. Construction Management and Economics, 29(9), 901–911. https://doi.org/10.1080/01446193.2011.608691
Jin, R., Yuan, H., & Chen, Q. (2019a). Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resources, Conservation and Recycling, 140, 175–188. https://doi.org/10.1016/j.resconrec.2018.09.029
Jin, R., Zou, P. X., Piroozfar, P., Wood, H., Yang, Y., Yan, L., & Han, Y. (2019b). A science mapping approach based review of construction safety research. Safety Science, 113, 285–297. https://doi.org/10.1016/j.ssci.2018.12.006
Kasravi, M., Mahmoudi, A., & Feylizadeh, M. R. (2019). A novel algorithm for solving resource-constrained project scheduling problems: a case study. Journal of Advances in Management Research, 16(2), 194–215. https://doi.org/10.1108/JAMR-03-2018-0033
Kastor, A., & Sirakoulis, K. (2009). The effectiveness of resource levelling tools for resource constraint project scheduling problem. International Journal of Project Management, 27(5), 493–500. https://doi.org/10.1016/j.ijproman.2008.08.006
Kavuma, A., Ock, J., & Jang, H. (2019). Factors influencing time and cost overruns on freeform construction projects. KSCE Journal of Civil Engineering, 23(4), 1442–1450. https://doi.org/10.1007/s12205-019-0447-x
Khanzadi, M., Movahedian, A., & Bagherpour, M. (2016). Finding optimum resource allocation to optimizing construction project Time/Cost through combination of artificial agents CPM and GA. Periodica Polytechnica Civil Engineering, 60(2), 169–180. https://doi.org/10.3311/PPci.7883
Kim, S. G. (2012). CPM schedule summarizing function of the beeline diagramming method. Journal of Asian Architecture and Building Engineering, 11(2), 367–374. https://doi.org/10.3130/jaabe.11.367
Kovvuri, P. R. R., Sawhney, A., Ahuja, R., & Sreekumar, A. (2016). Efficient project delivery using lean principles – An Indian case study. Journal of The Institution of Engineers (India): Series A, 97(1), 19–26. https://doi.org/10.1007/s40030-016-0142-6
Larsen, J. K., Shen, G. Q., Lindhard, S. M., & Brunoe, T. D. (2016). Factors affecting schedule delay, cost overrun, and quality level in public construction projects. Journal of Management in Engineering, 32(1), 04015032. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000391
Larsen, J. K., Lindhard, S. M., Brunoe, T. D., & Jensen, K. N. (2018). The relation between pre-planning, commissioning and enhanced project performance. Construction Economics and Building, 18(2), 1–14. https://doi.org/10.5130/AJCEB.v18i2.5762
Lekshmi, S. A., & Unnikrishnan, V. (2018). Planning and delay analysis of a residential complex: A case study. International Journal of Civil Engineering and Technology, 9(6), 1191–1201.
Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Automation in Construction, 35, 431–438. https://doi.org/10.1016/j.autcon.2013.05.030
Li, H., Zhang, J., Ren, L., & Shi, Z. (2013). Scheduling optimization in construction project based on ant colony genetic algorithm. Journal of Theoretical and Applied Information Technology, 48(3), 1540–1545.
Lin, C. W. R., & Hsiau, H. J. (2010). A genetic algorithm approach for optimizing chemical towers construction project scheduling with dynamic resources constraints. International Journal of Industrial Engineering: Theory Applications and Practice, 17(2), 128–141.
Lines, B. C., Sullivan, K. T., Hurtado, K. C., & Savicky, J. (2015). Planning in construction: Longitudinal study of pre-contract planning model demonstrates reduction in project cost and schedule growth. International Journal of Construction Education and Research, 11(1), 21–39. https://doi.org/10.1080/15578771.2013.872733
Liu, D., Xuan, P., Li, S., & Huang, P. (2015). Schedule risk analysis for TBM tunneling based on adaptive CYCLONE simulation in a geologic uncertainty-aware context. Journal of Computing in Civil Engineering, 29(6), 04014103. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000441
Long, L. D., & Ohsato, A. (2009). A genetic algorithm-based method for scheduling repetitive construction projects. Automation in Construction, 18(4), 499–511. https://doi.org/10.1016/j.autcon.2008.11.005
Luu, V. T., Kim, S. Y., Tuan, N. V., & Ogunlana, S. O. (2009). Quantifying schedule risk in construction projects using Bayesian belief networks. International Journal of Project Management, 27(1), 39–50. https://doi.org/10.1016/j.ijproman.2008.03.003
Ma, Y., & Xu, J. (2014). A novel multiple decision-maker model for resource-constrained project scheduling problems. Canadian Journal of Civil Engineering, 41(6), 500–511. https://doi.org/10.1139/cjce-2013-0232
Mahalingam, A., Yadav, A. K., & Varaprasad, J. (2015). Investigating the role of lean practices in enabling BIM adoption: Evidence from two Indian cases. Journal of Construction Engineering and Management, 141(7), 05015006. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000982
Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & LópezCózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12(4), 1160–1177. https://doi.org/10.1016/j.joi.2018.09.002
May, I., Pynn, C., & Hill, P. (2018). Arup’s digital future: The path to BIM. In Building Information Modeling (pp. 509–534). Springer. https://doi.org/10.1007/978-3-319-92862-3_31
McCabe, B., AbouRizk, S. M., & Goebel, R. (1998). Belief networks for construction performance diagnostics. Journal of Computing in Civil Engineering, 12(2), 93–100. https://doi.org/10.1061/(ASCE)0887-3801(1998)12:2(93)
Meho, L. I., & Yang, K. (2006). A new era in citation and bibliometric analyses: Web of Science, Scopus, and Google Scholar. Journal of the American Society for Information Science and Technology (accepted for publication).
Mirzaei, A., Nasirzadeh, F., Parchami Jalal, M., & Zamani, Y. (2018). 4D-BIM dynamic time-space conflict detection and quantification system for building construction projects. Journal of Construction Engineering and Management, 144(7), 04018056. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001504
Moselhi, O., & Alshibani, A. (2013). Schedule compression using Fuzzy Set Theory and contractors judgment. Journal of Information Technology in Construction, 18, 64–75.
Müller, V. C., & Bostrom, N. (2016). Future progress in artificial intelligence: A survey of expert opinion. In Fundamental Issues of Artificial Intelligence (pp. 555–572). Springer. https://doi.org/10.1007/978-3-319-26485-1_33
Ökmen, Ö., & Öztaş, A. (2008). Construction project network evaluation with correlated schedule risk analysis model. Journal of Construction Engineering and Management, 134(1), 49–63. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:1(49)
Ökmen, Ö., & Öztaş, A. (2014). A CPM-based scheduling method for construction projects with fuzzy sets and fuzzy operations. Journal of the South African Institution of Civil Engineering, 56(2), 2–8.
Petrochenko, M. V., Velichkin, V. Z., Kazakov, Y. N., & Zavodnova, Y. B. (2018). Reliability assessment of the construction schedule by the critical chain method. Magazine of Civil Engineering, 81(5), 25–31.
Poshdar, M., González, V. A., Raftery, G. M., Orozco, F., & Cabrera-Guerrero, G. G. (2018). A multi-objective probabilistic-based method to determine optimum allocation of time buffer in construction schedules. Automation in Construction, 92, 46–58. https://doi.org/10.1016/j.autcon.2018.03.025
Poshdar, M., González, V. A., Raftery, G. M., Orozco, F., Romeo, J. S., & Forcael, E. (2016). A probabilistic-based method to determine optimum size of project buffer in construction schedules. Journal of Construction Engineering and Management, 142(10), 04016046. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001158
Radziszewska-Zielina, E., Śladowski, G., & Sibielak, M. (2017). Planning the reconstruction of a historical building by using a fuzzy stochastic network. Automation in Construction, 84, 242–257. https://doi.org/10.1016/j.autcon.2017.08.003
Rakhshani, H., Idoumghar, L., Lepagnot, J., & Brevilliers, M. (2019). From feature selection to continues optimization. Accepted for EA2019.
Rosłon, J. H., & Kulejewski, J. E. (2019). A hybrid approach for solving multi-mode resource-constrained project scheduling problem in construction. Open Engineering, 9(1), 7–13. https://doi.org/10.1515/eng-2019-0006
Russell, M. M., Howell, G., Hsiang, S. M., & Liu, M. (2013). Application of time buffers to construction project task durations. Journal of Construction Engineering and Management, 139(10), 04013008. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000735
Russell, M. M., Hsiang, S. M., Liu, M., & Wambeke, B. (2014). Causes of time buffer and duration variation in construction project tasks: Comparison of perception to reality. Journal of Construction Engineering and Management, 140(6), 04014016. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000819
Ryall, T., Fitzpatrick, S., Parsloe, R., & Morris, J. (2012). Collaborative planning on the Borough viaduct project, London. In Proceedings of the Institution of Civil Engineers: Civil Engineering, 165(5), 45–49. https://doi.org/10.1680/cien.11.00015
Shen, Q., Xue, F., Li, Z., Luo, L., Xu, X., & Sommer, L. (2017). Schedule risk modeling in prefabrication housing production. Journal of Cleaner Production, 153, 692–706. https://doi.org/10.1016/j.jclepro.2016.11.028
Sigalov, K., & König, M. (2017). Recognition of process patterns for BIM-based construction schedules. Advanced Engineering Informatics, 33, 456–472. https://doi.org/10.1016/j.aei.2016.12.003
Sinesilassie, E. G., Tabish, S. Z. S., & Jha, K. N. (2017). Critical factors affecting schedule performance: A case of Ethiopian public construction projects - Engineers’ perspective. Engineering, Construction and Architectural Management, 24(5), 757–773. https://doi.org/10.1108/ECAM-03-2016-0062
Siu, M., Lu, M., AbouRizk, S., & Tidder, V. (2016). Quantitative assessment of budget sufficiency and resource utilization for resource-constrained project schedules. Journal of Construction Engineering and Management, 142(6), 04016003. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001106
Song, L., Mohamed, Y., & AbouRizk, S. M. (2009). Early contractor involvement in design and its impact on construction schedule performance. Journal of Management in Engineering, 25(1), 12–20. https://doi.org/10.1061/(ASCE)0742-597X(2009)25:1(12)
Sonmez, R., Iranagh, M. A., & Uysal, F. (2016). Critical sequence crashing heuristic for resource-constrained discrete time-cost trade-off problem. Journal of Construction Engineering and Management, 142(3), 04015090. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001077
Soto Ramírez, D., Rivera Cadavid, L., Orobio Quiñones, A., & Cuadros López, A. J. (2018). Evaluation of the impact of schedule risks in a road infrastructure project. Espacios, 39(47).
Subramani, T., & Ammai, A. (2018). Maturing construction management up the BIM model & scheduling using Primavera. International Journal of Engineering and Technology, 7(3). https://doi.org/10.14419/ijet.v7i3.10.15617
Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, 18(3), 357–375. https://doi.org/10.1016/j.autcon.2008.10.003
Suresh, M., Dutta, P., & Jain, K. (2011). Analysis of an EPC project: A solution to the resource constrained project scheduling problem using genetic algorithms. International Journal of Industrial and Systems Engineering, 8(2), 251–269. https://doi.org/10.1504/IJISE.2011.041372
Tang, Y., Liu, R., & Sun, Q. (2014). Schedule control model for linear projects based on linear scheduling method and constraint programming. Automation in Construction, 37, 22–37. https://doi.org/10.1016/j.autcon.2013.09.008
Tesfaye, E., Lemma, T., Berhan, E., & Beshah, B. (2017). Key project planning processes affecting project success. International Journal for Quality Research, 11(1), 159–172.
Thomas, H. R., Maloney, W. F., Horner, R. M. W., Smith, G. R., Handa, V. K., & Sanders, S. R. (1990). Modeling construction labor productivity. Journal of Construction Engineering and Management, 116(4), 705–726. https://doi.org/10.1061/(ASCE)0733-9364(1990)116:4(705)
Tiwari, S., & Johari, S. (2015). Project scheduling by integration of time cost trade-off and constrained resource scheduling. Journal of The Institution of Engineers (India): Series A, 96(1), 37–46. https://doi.org/10.1007/s40030-014-0099-2
Tomar, A., & Bansal, V. K. (2019). Scheduling of repetitive construction projects using geographic information systems: an integration of critical path method and line of balance. Asian Journal of Civil Engineering, 20(4), 549–562. https://doi.org/10.1007/s42107-019-00123-3
Tran, D. H., & Long, L. D. (2018). Project scheduling with time, cost and risk trade-off using adaptive multiple objective differential evolution. Engineering, Construction and Architectural Management, 25(5), 623–638. https://doi.org/10.1108/ECAM-05-2017-0085
Udaipurwala, A., & Russell, A. D. (2002). Computer-assisted construction methods knowledge management and selection. Canadian Journal of Civil Engineering, 29(3), 499–516. https://doi.org/10.1139/l02-030
Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. ArXiv 2011.
Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In Measuring Scholarly Impact (pp. 285–320). Springer. https://doi.org/10.1007/978-3-319-10377-8_13
Vidhyasri, R., & Sivagamasundari, R. (2017). A review on factors influencing construction project scheduling. International Journal of Civil Engineering and Technology, 8(3), 146–157.
Vignesh, C. (2017). A case study of implementing last planner system in Tiruchirappalli District of Tamil Nadu - India. International Journal of Civil Engineering and Technology, 8(4), 1918–1927.
Wambeke, B. W., Hsiang, S. M., & Liu, M. (2011). Causes of variation in construction project task starting times and duration. Journal of Construction Engineering and Management, 137(9), 663–677. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000342
Wang, J., & Yuan, H. (2016). System dynamics approach for investigating the risk effects on schedule delay in infrastructure projects. Journal of Management in Engineering, 33(1), 04016029. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000472
Wang, Y.-R., Yu, C.-Y., & Chan, H.-H. (2012). Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models. International Journal of Project Management, 30(4), 470–478. https://doi.org/10.1016/j.ijproman.2011.09.002
Wang, Z., & Rezazadeh Azar, E. (2019). BIM-based draft schedule generation in reinforced concrete-framed buildings. Construction Innovation, 19(2), 280–294. https://doi.org/10.1108/CI-11-2018-0094
Xu, X., Wang, J., Li, C. Z., Huang, W., & Xia, N. (2018). Schedule risk analysis of infrastructure projects: A hybrid dynamic approach. Automation in Construction, 95, 20–34. https://doi.org/10.1016/j.autcon.2018.07.026
Yahya, M. A., & Mohamad, M. I. (2011). Review on lean principles for rapid construction. Jurnal Teknologi, 54, 1–11. https://doi.org/10.11113/jt.v54.87
Yang, J. (2017). Reviewing construction schedule float management. Open Construction and Building Technology Journal, 11, 1–13. https://doi.org/10.2174/1874836801711010001
Yao, G., Yang, Y., Wang, M., & Zhou, M. (2018). A review of construction schedule optimization with heuristic method. Journal of Advanced Oxidation Technologies, 21(2).
Zareei, S. (2018). Project scheduling for constructing biogas plant using critical path method. Renewable and Sustainable Energy Reviews, 81, 756–759. https://doi.org/10.1016/j.rser.2017.08.025
Zhou, J., Love, P. E. D., Wang, X., Teo, K. L., & Irani, Z. (2013). A review of methods and algorithms for optimizing construction scheduling. Journal of the Operational Research Society, 64(8), 1091–1105. https://doi.org/10.1057/jors.2012.174
Zou, X., Huang, Y., & Zhang, L. (2016). Genetic algorithm-based method for the deadline problem in repetitive construction projects considering soft logic. Journal of Management in Engineering, 32(4), 04016002. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000426
Zou, X., Zhang, L., & Kan, Z. (2014). Improved strategy for resource allocation in repetitive projects considering the learning effect. Journal of Construction Engineering and Management, 140(11), 04014053. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000896
Zou, X., Zhang, L., & Qi, J. (2015). A trade-off between time and cost in scheduling repetitive construction projects. Journal of Industrial and Management Optimization, 11(4), 1423–1434. https://doi.org/10.3934/jimo.2015.11.1423
Zwikael, O. (2009). Critical planning processes in construction projects. Construction Innovation, 9(4), 372–387. https://doi.org/10.1108/14714170910995921