Share:


A novel hybrid model for predicting the bearing capacity of piles

    Li Tao Affiliation
    ; Xinhua Xue Affiliation

Abstract

Due to the uncertainty of soil condition and pile design characteristics, it is always a challenge for geotechnical engineers to accurately determine the bearing capacity of piles. The main objective of this study is to propose a hybrid model coupling least squares support vector machine (LSSVM) with an improved particle swarm optimization (IPSO) algorithm for the prediction of bearing capacity of piles. The improved PSO algorithm was used to optimize the LSSVM hyperparameters. The performance of the IPSO-LSSVM model was compared with seven artificial intelligence models, namely adaptive neuro-fuzzy inference system (ANFIS), M5 model tree (M5MT), multivariate adaptive regression splines (MARS), gene expression programming (GEP), random forest (RF), regression tree (RT) and a stacked ensemble model. Six statistical indices (e.g., coefficient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE), relative root mean squared error (RRMSE), BIAS and discrepancy ratio (DR)) were used to evaluate the performance of the models. The R2, MAE, RMSE, RRMSE and BIAS values of the IPSO-LSSVM model were 1, 4.27 kN, 6.164 kN, 0.005 and 0, respectively, for the training datasets and 0.9977, 22 kN, 36.03 kN, 0.0275 and –11, respectively, for the testing datasets. Compared with the ANFIS, MARS, GEP, M5MT, RF, RT and the stacked ensemble models, the proposed IPSO-LSSVM model shows high accuracy and robustness on the test datasets. In addition, the sensitivity, uncertainty, reliability and resilience of the IPSO-LSSVM model were also analyzed in this study.


First published online 22 October 2024

Keyword : bearing capacity, pile, adaptive neuro-fuzzy inference system, least squares support vector machine, stacked ensemble model

How to Cite
Tao, L., & Xue, X. (2024). A novel hybrid model for predicting the bearing capacity of piles. Journal of Civil Engineering and Management, 1-14. https://doi.org/10.3846/jcem.2024.21886
Published in Issue
Oct 22, 2024
Abstract Views
114
PDF Downloads
67
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahmadi, M. H., Baghban, A., Ghzavini, M., Hadipoor, M., Ghasempour, R., & Nazemzadegan, M. R. (2020). An insight into the prediction of TiO2/water nanofluid viscosity through intelligence schemes. Journal of Thermal Analysis and Calorimetry, 139, 2381–2394. https://doi.org/10.1007/s10973-019-08636-4

Alkroosh, I., & Nikraz, H. (2012). Predicting axial capacity of driven piles in cohesive soils using intelligent computing. Engineering Applications of Artificial Intelligence, 25(3), 618–627. https://doi.org/10.1016/j.engappai.2011.08.009

Alkroosh, I., & Nikraz, H. (2014). Predicting pile dynamic capacity via application of an evolutionary algorithm. Soils and Foundations, 54(2), 233–242. https://doi.org/10.1016/j.sandf.2014.02.013

Amjad, M., Ahmad, I., Ahmad, M., Wróblewski, P., Kaminski, P., & Amjad, U. (2022). Prediction of pile bearing capacity using XGBoost algorithm: modeling and performance evaluation. Applied Sciences, 12(4), Article 2126. https://doi.org/10.3390/app12042126

Armaghani, D. J., Shoib, R. S. N. S. B. R., Faizi, K., & Rashid, A. S. A. (2017). Developing a hybrid PSO-ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Computing and Applications, 28, 391–405. https://doi.org/10.1007/s00521-015-2072-z

Baziar, M. H., Kashkooli, A., & Azizkandi, A. S. (2012). Prediction of pile shaft resistance using cone penetration tests (CPTs). Computers and Geotechnics, 45, 74–82. https://doi.org/10.1016/j.compgeo.2012.04.005

Baghban, A., & Khoshkharam, A. (2016). Application of LSSVM strategy to estimate asphaltene precipitation during different production processes. Petroleum Science and Technology, 34(22), 1855–1860. https://doi.org/10.1080/10916466.2016.1237966

Baghban, A., Kashiwao, T., Bahadori, M., Ahmad, Z., & Bahadori, A. (2016a). Estimation of natural gases water content using adaptive neuro-fuzzy inference system. Petroleum Science and Technology, 34(10), 891–897. https://doi.org/10.1080/10916466.2016.1176039

Baghban, A., Bahadori M., Ahmad, Z., Kashiwao, T., & Bahadori, A. (2016b). Modelling of true vapor pressure of petroleum products using ANFIS algorithm. Petroleum Science and Technology, 34(10), 933–939. https://doi.org/10.1080/10916466.2016.1170843

Baghban, A., Abbasi, P., & Rostami, P. (2016c). Modeling of viscosity for mixtures of Athabasca bitumen and heavy n-alkane with LSSVM algorithm. Petroleum Science and Technology, 34(20), 1698–1704. https://doi.org/10.1080/10916466.2016.1219748

Bahadori, A., Baghban, A., Bahadori, M., Lee, M., Ahmad, Z., Zare, M., & Abdollahi, E. (2016). Computational intelligent strategies to predict energy conservation benefits in excess air controlled gas-fired systems. Applied Thermal Engineering, 102, 432–446. https://doi.org/10.1016/j.applthemaleng.2016.04.005

Bemani, A., Baghban, A., Mosavi, A., & Shahab, S. (2020a). Estimating CO2-Brine diffusivity using hybrid models of ANFIS and evolutionary algorithms. Engineering Applications of Computational Fluid Mechanics, 14(1), 818–834. https://doi.org/10.1080/19942060.2020.1774422

Bemani, A., Baghban, A., Mohammadi, & Amir H. (2020b). An insight into the modeling of sulfur content of sour gases in supercritical region. Journal of Petroleum Science and Engineering, 184, Article 106459. https://doi.org/10.1016/j.petrol.2019.106459

Bemani, A., Baghban, A., Shamshirband, S., Mosavi, A., Csiba, P., & Varkonyi-Koczy, A. R. (2020c). Applying ANN, ANFIS, and LSSVM models for estimation of acid solvent solubility in supercritical CO2. Computers, Materials & Continua, 63(3), 1175–1204. https://doi.org/10.32604/cmc.2020.07723

Benbouras, M. A., Petrişor. A.-I., Zedira, H., Ghelani, L., & Lefilef, L. (2021). Forecasting the bearing capacity of the driven piles using advanced machine-learning techniques. Applied Sciences, 11(22), Article 10908. https://doi.org/10.3390/app112210908

Breiman, L., Friedman, J. H., Olshen, B. A., & Stone, C. (1984). Classification and regression trees. Biometrics, 40, Article 874. https://doi.org/10.2307/2530946

Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 2(3), 267–278. https://doi.org/10.3233/IFS-1994-2306

Das, S. K., & Basudhar, P. K. (2006). Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics, 33(8), 454–463. https://doi.org/10.1016/j.compgeo.2006.08.006

Daneshvar, D., & Behnood, A. (2020). Estimation of the dynamic modulus of asphalt concretes using random forests algorithm. International Journal of Pavement Engineering, 23(2), 250–260. https://doi.org/10.1080/10298436.2020.1741587

Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems, 13(2), 87–129. https://doi.org/10.48550/arXiv.cs/0102027

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963

Haratipour, P., Baghban, A., Mohammadi, A. H., Nazhad, S. H. H., & Bahadori, A. (2017). On the estimation of viscosities and densities of CO2-loaded MDEA, MDEA+AMP, MDEA+DIPA, MDEA+MEA, and MDEA+DEA aqueous solutions. Journal of Molecular Liquids, 242, 146–159. https://doi.org/10.1016/j.moliq.2017.06.123

Homaei, F., & Najafzadeh, M. (2020). A reliability-based probabilistic evaluation of the wave-induced scour depth around marine structure piles. Ocean Engineering, 196, Article 106818. https://doi.org/10.1016/j.oceaneng.2019.106818

Homaei, F., & Najafzadeh, M. (2022). Failure analysis of scouring at pile groups exposed to steady-state flow: On the assessment of reliability-based probabilistic methodology. Ocean Engineering, 266(Part 3), Article 112707. https://doi.org/10.1016/j.oceaneng.2022.112707

Kalinli, A., Acar, M. C., & Gunduz, Z. (2011). New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial nerual networks and ant colony optimization. Engineering Geology, 117(1–2), 29–38. https://doi.org/10.1016/j.enggeo.2010.10.002

Kardani, M. N., Baghban, A., Sasanipour, J., Mohammadi, Amir, H., & Habibzadeh, S. (2018). Group contribution methods for estimating CO2 absorption capacities of imidazolium and ammonium-based polyionic liquids. Journal of Cleaner Production, 203, 601–618. https://doi.org/10.1016/j.jclepro.2018.08.127

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of ICNN’95 – International Conference on Neural Networks (Vol. 4, pp. 1942–1948), Perth, Australia. IEEE Service Center. https://doi.org/10.1109/ICNN.1995.488968

Li, L., Li, J. P., Sun, D. A., & Zhang, L. X. (2017). Time-dependent bearing capacity of a jacked pile: An analytical approach based on effective stress method. Ocean Engineering, 143, 177–185. https://doi.org/10.1016/j.oceaneng.2017.08.010

Lin, H. M., Chang, S. K., Wu, S. K., & Juang, C. H. (2009). Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan Area: Pre- and post earthquake investigation. Engineering Geology, 104(3–4), 280–289. https://doi.org/10.1016/j.enggeo.2008.11.007

Luo, R. P., Yang, M., & Li, W. C. (2018). Normalized settlement of piled raft in homogeneous clay. Computers and Geotechnics, 103, 165–178. https://doi.org/10.1016/j.compgeo.2018.07.023

Mercer, J. (1909). Functions of positive and negative type, and their connection with the theory of integral equations. Proceedings of the Royal Society A, 209, 415–446. https://doi.org/10.1098/rspa.1909.0075

Momeni, E., Nazir, R., Armaghani, D. J., & Maizir, H. (2014). Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement, 57, 122–131. https://doi.org/10.1016/j.measurement.2014.08.007

Murlidhar, B. R., Sinha, R. K., Mohamad, E. T., Sonkar, R., & Khorami, M. (2020). The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity. International Journal of Hydromechatronics, 3(1), 69–87. https://doi.org/10.1504/IJHM.2020.105484

Najafzadeh, M. (2015). Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions. Ocean Engineering, 99, 85–94. https://doi.org/10.1016/j.oceaneng.2015.01.014

Najafzadeh, M., & Azamathulla, H. M. (2013a). Group method of data handling to predict scour depth around bridge piers. Neural Computing and Applications, 23, 2107–2112. https://doi.org/10.1007/s00521-012-1160-6

Najafzadeh, M., & Azamathulla, H. M. (2013b). Neuro-fuzzy GMDH to predict the scour pile groups due to waves. Journal of Computing in Civil Engineering, 29(5), Article 04014068. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000376

Najafzadeh, M., & Barani, G.-A. (2011). Comparison of group method of data handling based genetic programming and back propagation system to predict scour depth around bridge piers. Scientia Iranica, 18(6), 1207–1213. https://doi.org/10.1016/j.scient.2011.11.017

Najafzadeh, M., & Oliveto, G. (2021). More reliable predictions of clear-water scour depth at pile groups by robust artificial intelligence techniques while preserving physical consistency. Soft Computing, 25, 5723–5746. https://doi.org/10.1007/s00500-020-05567-3

Najafzadeh, M., & Mahmoudi-Rad, M. (2024). New empirical equations to assess energy efficiency of flow-dissipating vortex dropshaft. Engineering Applications of Artificial Intelligence, 131, Article 107759. https://doi.org/10.1016/j.engappai.2023.107759

Najafzadeh, M., Barani, G.-A., & Azamathulla, H. M. (2013). GMDH to predict scour depth around a pier in cohesive soils. Applied Ocean Research, 40, 35–41. https://doi.org/10.1016/j.apor.2012.12.004

Najafzadeh, M., Etemad-Shahidi, A., & Lim, S. Y. (2016). Scour prediction in long contractions using ANFIS and SVM. Ocean Engineering, 111, 128–135. https://doi.org/10.1016/j.oceaneng.2015.10.053

Nejad, F. P., & Jaksa, M. B. (2017). Load-settlement behavior modeling of single piles using artificial neural networks and CPT data. Computers and Geotechnics, 89, 9–21. https://doi.org/10.1016/j.compgeo.2017.04.003

Pal, M., & Deswal, S. (2010). Modelling pile capacity using Gaussian process regression. Computers and Geotechnics, 37, 942–947. https://doi.org/10.1016/j.compgeo.2010.07.012

Pham, T. A., Ly, H.-B., Tran, V. Q., & Giap, L. V. (2020). Prediction of Pile Axial bearing capacity using artificial neural network and random forest. Applied Sciences, 10(5), Article 1871. https://doi.org/10.3390/app10051871

Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of AI’92 (pp. 343–348). Singapore.

Ramesh, M. B., Kumar, S. R., Tonnizam, M. E., Rajesh, S., & Majid, K. (2020). The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity. International Journal of Hydromechatronics, 3(1), 69–87. https://doi.org/10.1504/IJHM.2020.105484

Rezazadeh, S., & Eslami, A. (2017). Empirical methods for determining shaft bearing capacity of semi-deep foundations socketed in rocks. Journal of Rock Mechanics and Geotechnical Engineering, 9(6), 1140–1151. https://doi.org/10.1016/j.jrmge.2017.06.003

Saberi-Movahed, F., Najafzadeh, M., & Mehrpooya, A. (2020). Receiving more accurate prediction for longitudinal dispersion coefficients in water pipelines: Training group method of data handling using extreme learning machine conceptions. Water Resources Management, 34, 529–561. https://doi.org/10.1007/s11269-019-02463-w

Salgado, R., Zhang, Y. B., Abou-Jaoude, G., Loukidis, D., & Bisht, V. (2017). Pile driving formulas based on pile wave equation analyses. Computers and Geotechnics, 81, 307–321. https://doi.org/10.1016/j.compgeo.2016.09.004

Sheil, B. B., & McCabe, B. A. (2016). An analytical approach for the prediction of single pile and pile group behavior in clay. Computers and Geotechnics, 75, 145–158. https://doi.org/10.1016/j.compgeo.2016.02.001

Suykens, J. A. K, Vandewalle, J., & De Moor, B. (2001). Optimal control by least squares support vector machines. Neural Networks, 14(1), 23–35. https://doi.org/10.1016/S0893-6080(00)00077-0

Teh, C. I., Wong, K. S., Goh, A. T. C., & Jaritngam, S. (1997). Prediction of pile capacity using neural networks. Journal of Computing in Civil Engineering, 11(2), 129–138. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129)

Wang, X. F., Zeng, X. W., & Li, J. L. (2018). Assessment of bearing capacity of axially loaded monopiles based on centrifuge tests. Ocean Engineering, 167, 357–368. https://doi.org/10.1016/j.oceaneng.2018.08.063

Yong, W. X., Zhou, J., Armaghani, D. J., Tahir, M. M., Tarinejad, R., Pham, B. T., & Huynh, V. V. (2021). A new hybrid simulated annealing-based genetic programming technique to predict the ultimate bearing capacity of piles. Engineering with Computers, 37, 2111–2127. https://doi.org/10.1007/s00366-019-00932-9

Zheng, R. Y., Wu, S., & Wang, N. J. (2006). Predicting ultimate bearing capacity of single pile using ANFIS and reliability analysis. Industrial Construction, 36(6), 70–76 (in Chinese).