Share:


The cooling intensity dependent on landscape complexity of green infrastructure in the metropolitan area

    Yuncai Wang Affiliation
    ; Junda Huang Affiliation
    ; Chundi Chen Affiliation
    ; Jiake Shen Affiliation
    ; Shuo Sheng Affiliation

Abstract

The cooling effect of green infrastructure (GI) is becoming a hot topic on mitigating the urban heat island (UHI) effect. Alterations to the green space are a viable solution for reducing land surface temperature (LST), yet few studies provide specific guidance for landscape planning adapted to the different regions. This paper proposed and defined the landscape complexity and the threshold value of cooling effect (TVoE). Results find that: (1) GI provides a better cooling effect in the densely built-up area than the green belt; (2) GI with a simple form, aggregated configuration, and low patch density had a better cooling intensity; (3) In the densely built-up area, TVoE of the forest area is 4.5 ha, while in the green belt, TVoE of the forest and grassland area is 9 ha and 2.25 ha. These conclusions will help the planners to reduce LST effectively, and employ environmentally sustainable planning.

Keyword : urban cooling island, cooling effect, landscape topography, landscape composition, spatial configuration, the densely built-up area, the green belt, environmental sustainability

How to Cite
Wang, Y., Huang, J., Chen, C., Shen, J., & Sheng, S. (2021). The cooling intensity dependent on landscape complexity of green infrastructure in the metropolitan area. Journal of Environmental Engineering and Landscape Management, 29(3), 318-336. https://doi.org/10.3846/jeelm.2021.15573
Published in Issue
Oct 19, 2021
Abstract Views
1189
PDF Downloads
656
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Akbari, H., & Kolokotsa, D. (2016). Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 133, 834–842. https://doi.org/10.1016/j.enbuild.2016.09.067

Augusto, B., Roebeling, P., Rafael, S., Ferreira, J., Ascenso, A., & Bodilis, C. (2020). Short and medium- to long-term impacts of nature-based solutions on urban heat. Sustainable Cities and Society, 57, 102122. https://doi.org/10.1016/j.scs.2020.102122

Bao, T., Li, X., Zhang, J., Zhang, Y., & Tian, S. (2016). Assessing the distribution of urban green spaces and its anisotropic cooling distance on urban heat island pattern in Baotou, China. ISPRS International Journal of Geo-Information, 5(2), 12. https://doi.org/10.3390/ijgi5020012

Bartesaghi Koc, C., Osmond, P., & Peters, A. (2018). Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources. Solar Energy, 166, 486–508. https://doi.org/10.1016/j.solener.2018.03.008

Berardi, U., Ghaffarian Hoseini, A. H., & Ghaffarian Hoseini, A. (2014). State-of-the-art analysis of the environmental benefits of green roofs. Applied Energy, 115, 411–428. https://doi.org/10.1016/j.apenergy.2013.10.047

Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran. Sustainable Cities and Society, 23, 94–104. https://doi.org/10.1016/j.scs.2016.03.009

Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006

Burn, R. (1984). The fractal geometry of nature by Benoit B. Mandelbrot. The Mathematical Gazette, 68(443), 71–72. https://doi.org/10.2307/3615422

Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252. https://doi.org/10.1016/S0034-4257(97)00104-1

Ceplova, N., Kalusova, V., & Lososova, Z. (2017). Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landscape and Urban Planning, 159, 15–22. https://doi.org/10.1016/j.landurbplan.2016.11.004

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903. https://doi.org/10.1016/j.rse.2009.01.007

Chen, Y., & Yu, S. (2017). Impacts of urban landscape patterns on urban thermal variations in Guangzhou, China. International Journal of Applied Earth Observation and Geoinformation, 54, 65–71. https://doi.org/10.1016/j.jag.2016.09.007

Chian, S. C., & Wilkinson, S. M. (2015). Feasibility of remote sensing for multihazard analysis of landslides in Padang Pariaman during the 2009 Padang Earthquake. Natural Hazards Review, 16(1). https://doi.org/10.1061/(ASCE)NH.1527-6996.0000143

Chui, A. C., Gittelson, A., Sebastian, E., Stamler, N., & Gaffin, S. R. (2018). Urban heat islands and cooler infrastructure – Measuring near-surface temperatures with hand-held infrared cameras. Urban Climate, 24, 51–62. https://doi.org/10.1016/j.uclim.2017.12.009

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B

Czapla-Myers, J., McCorkel, J., Anderson, N., Thome, K., Biggar, S., Helder, D., Aaron, D., Leigh, L., & Mishra, N. (2015). The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sensing, 7(1), 600–626. https://doi.org/10.3390/rs70100600

Danila, E., Valentin, H., Georgescu, P. L., & Moraru, L. (2019). Survey of forest cover changes by means of multifractal analysis. Carpathian Journal of Earth and Environmental Sciences, 14(1), 51–60. https://doi.org/10.26471/cjees/2019/014/057

Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave, A. G., Mittal, N., Feliu, E., & Faehnle, M. (2014). Miti-gating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 146, 107–115. https://doi.org/10.1016/j.jenvman.2014.07.025

Doick, K. J., Peace, A., & Hutchings, T. R. (2014). The role of one large greenspace in mitigating London‘s nocturnal urban heat island. Sci-ence of the Total Environment, 493, 662–671. https://doi.org/10.1016/j.scitotenv.2014.06.048

Du, H., Cai, W., Xu, Y., Wang, Z., Wang, Y., & Cai, Y. (2017). Quantifying the cool island effects of urban green spaces using remote sens-ing Data. Urban Forestry & Urban Greening, 27, 24–31. https://doi.org/10.1016/j.ufug.2017.06.008

Duncan, J. M. A., Boruff, B., Saunders, A., Sun, Q., Hurley, J., & Amati, M. (2019). Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of the Total Environment, 656, 118–128. https://doi.org/10.1016/j.scitotenv.2018.11.223

Equere, V., Mirzaei, P. A., Riffat, S., & Wang, Y. (2021). Integration of topological aspect of city terrains to predict the spatial distribution of urban heat island using GIS and ANN. Sustainable Cities and Society, 69, 102825. https://doi.org/10.1016/j.scs.2021.102825

Esau, I., Miles, V., Varentsov, M., Konstantinov, P., & Melnikov, V. (2019). Spatial structure and temporal variability of a surface urban heat island in cold continental climate. Theoretical and Applied Climatology, 137(3–4), 2513–2528. https://doi.org/10.1007/s00704-018-02754-z

Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B., & Worm, B. (2016). Megafaunal impacts on structure and function of ocean eco-systems. Annual Review of Environment and Resources, 41(1), 83–116. https://doi.org/10.1146/annurev-environ-110615-085622

Fan, C., Myint, S. W., & Zheng, B. (2015). Measuring the spatial arrangement of urban vegetation and its impacts on seasonal surface temper-atures. Progress in Physical Geography-Earth and Environment, 39(2), 199–219. https://doi.org/10.1177/0309133314567583

Fan, H., Yu, Z., Yang, G., Liu, T. Y., Liu, T. Y., Hung, C. H., & Vejre, H. (2019). How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective. Agricultural and Forest Meteorology, 265, 338–348. https://doi.org/10.1016/j.agrformet.2018.11.027

Fu, Y., Ren, Z., Yu, Q., He, X., Xiao, L., Wang, Q., & Liu, C. (2019). Long-term dynamics of urban thermal comfort in China‘s four major capital cities across different climate zones. Peer J, 7, e8026. https://doi.org/10.7717/peerj.8026

Geletič, J., Lehnert, M., Savić, S., & Milošević, D. (2019). Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21–32. https://doi.org/10.1016/j.buildenv.2019.04.011

Gong, W., Wang, H., Wang, X., Fan, W., & Stott, P. (2017). Effect of terrain on landscape patterns and ecological effects by a gradient-based RS and GIS analysis. Journal of Forestry Research, 28(5), 1061–1072. https://doi.org/10.1007/s11676-017-0385-8

Guo, L., Liu, R., Men, C., Wang, Q., Miao, Y., & Zhang, Y. (2019). Quantifying and simulating landscape composition and pattern impacts on land surface temperature: A decadal study of the rapidly urbanizing city of Beijing, China. Science of the Total Environment, 654, 430–440. https://doi.org/10.1016/j.scitotenv.2018.11.108

Hamada, S., & Ohta, T. (2010). Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban Forestry & Urban Greening, 9(1), 15–24. https://doi.org/10.1016/j.ufug.2009.10.002

Hernandez-Moreno, A., & Reyes-Paecke, S. (2018). The effects of urban expansion on green infrastructure along an extended latitudinal gra-dient (23 degrees S-45 degrees S) in Chile over the last thirty years. Land Use Policy, 79, 725–733. https://doi.org/10.1016/j.landusepol.2018.09.008

Imran, H. M., Kala, J., Ng, A. W. M., & Muthukumaran, S. (2019). Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather and Climate Extremes, 25, 100217. https://doi.org/10.1016/j.wace.2019.100217

Jia, Q. (2009). Study of urban green patch‘s thermal environment effect with remote sensing: A case study of Chengdu City. Chinese Land-scape Architecture.

Jiao, L., Xu, G., Jin, J., Dong, T., Liu, J., Wu, Y., & Zhang, B. (2017). Remotely sensed urban environmental indices and their economic im-plications. Habitat International, 67, 22–32. https://doi.org/10.1016/j.habitatint.2017.06.012

John, V., Jain, P., Rahate, M., & Labhasetwar, P. (2014). Assessment of deterioration in water quality from source to household storage in semi-urban settings of developing countries. Environmental Monitoring and Assessment, 186(2), 725–734. https://doi.org/10.1007/s10661-013-3412-z

Julien, Y., & Sobrino, J. A. (2010). Comparison of cloud-reconstruction methods for time series of composite NDVI data. Remote Sensing of Environment, 114(3), 618–625. https://doi.org/10.1016/j.rse.2009.11.001

Kim, J.-H., Gu, D., Sohn, W., Kil, S.-H., Kim, H., & Lee, D.-K. (2016). Neighborhood landscape spatial patterns and land surface temperature: An empirical study on single-family residential areas in Austin, Texas. International Journal of Environmental Research and Public Health, 13(9), 880. https://doi.org/10.3390/ijerph13090880

Koc, C. B., Osmond, P., & Peters, A. (2017). Towards a comprehensive green infrastructure typology: A systematic review of approaches, methods and typologies. Urban Ecosystems, 20(1), 15–35. https://doi.org/10.1007/s11252-016-0578-5

Kong, F., Yin, H., James, P., Hutyra, L. R., & He, H. S. (2014a). Effects of spatial pattern of greenspace on urban cooling in a large metropoli-tan area of eastern China. Landscape and Urban Planning, 128, 35–47. https://doi.org/10.1016/j.landurbplan.2014.04.018

Kong, F., Yin, H., Wang, C., Cavan, G., & James, P. (2014b). A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale. Urban Forestry & Urban Greening, 13(4), 846–853. https://doi.org/10.1016/j.ufug.2014.09.009

Li, C., Zhao, J., Nguyen Xuan, T., Yang, W., & Li, Z. (2018). Analysis of the spatiotemporally varying effects of urban spatial patterns on land surface temperatures. Journal of Environmental Engineering and Landscape Management, 26(3), 216–231. https://doi.org/10.3846/jeelm.2018.5378

Li, Y., & Zhao, X. (2012). An empirical study of the impact of human activity on long-term temperature change in China: A perspective from energy consumption. Journal of Geophysical Research – Atmospheres, 117(D17), 1–12. https://doi.org/10.1029/2012JD018132

Li, Y., Sun, Y., Li, J., & Gao, C. (2020). Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustainable Cities and Society, 63, 102425. https://doi.org/10.1016/j.scs.2020.102425

Liu, Y., Peng, J., & Wang, Y. (2017). Diversification of land surface temperature change under urban landscape renewal: A case study in the main city of Shenzhen, China. Remote Sensing, 9(9), 919. https://doi.org/10.3390/rs9090919

Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, U., Sawut, M., & Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 59–66. https://doi.org/10.1016/j.isprsjprs.2013.12.010

Mallen, E., Stone, B., & Lanza, K. (2019). A methodological assessment of extreme heat mortality modeling and heat vulnerability mapping in Dallas, Texas. Urban Climate, 30, 100528. https://doi.org/10.1016/j.uclim.2019.100528

Manoli, G., Fatichi, S., Schlapfer, M., Yu, K., Crowther, T. W., Meili, N., Burlando, P., Katul, G. G., & Bou-Zeid, E. (2019). Magnitude of urban heat islands largely explained by climate and population. Nature, 573, 55–60. https://doi.org/10.1038/s41586-019-1512-9

Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Feng, G., Kutler, J., & Teng-Kui, L. (2006). A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters, 3(1), 68–72. https://doi.org/10.1109/LGRS.2005.857030

Masoudi, M., & Tan, P. Y. (2019). Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temper-ature. Landscape and Urban Planning, 184, 44–58. https://doi.org/10.1016/j.landurbplan.2018.10.023

McGarigal, K. S., Cushman, S., Neel, M., & Ene, E. (2002). FRAGSTATS: Spatial pattern analysis program for categorical maps. https://www.researchgate.net/publication/259011515_FRAGSTATS_Spatial_pattern_analysis_program_for_categorical_maps

Meng, Y., Liu, X., Wu, L., Liu, M., Zhang, B., & Zhao, S. (2019). Spatio-temporal variation indicators for landscape structure dynamics mon-itoring using dense normalized difference vegetation index time series. Ecological Indicators, 107, 105607. https://doi.org/10.1016/j.ecolind.2019.105607

Monteiro, M. V., Doick, K. J., Handley, P., & Peace, A. (2016). The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban Forestry & Urban Greening, 16, 160–169. https://doi.org/10.1016/j.ufug.2016.02.008

Myint, S. W., Zheng, B., Talen, E., Fan, C., Kaplan, S., Middel, A., Smith, M., Huang, H.-p., & Brazel, A. (2015). Does the spatial arrange-ment of urban landscape matter? Examples of urban warming and cooling in Phoenix and Las Vegas. Ecosystem Health and Sustainability, 1(4), 1–15. https://doi.org/10.1890/EHS14-0028.1

Naeem, S., Cao, C., Qazi, W. A., Zamani, M., Wei, C., Acharya, B. K., & Rehman, A. U. (2018). Studying the association between green space characteristics and land surface temperature for sustainable urban environments: An analysis of Beijing and Islamabad. ISPRS Interna-tional Journal of Geo-Information, 7(2), 38. https://doi.org/10.3390/ijgi7020038

Ngulani, T., & Shackleton, C. M. (2020). The degree, extent and value of air temperature amelioration by urban green spaces in Bulawayo, Zimbabwe. South African Geographical Journal, 102(3), 344–355. https://doi.org/10.1080/03736245.2019.1685405

Noori, A. M., Pradhan, B., & Ajaj, Q. M. (2019). Dam site suitability assessment at the Greater Zab River in northern Iraq using remote sens-ing data and GIS. Journal of Hydrology, 574, 964–979. https://doi.org/10.1016/j.jhydrol.2019.05.001

Novikmec, M., Svitok, M., Kocicky, D., Sporka, F., & Bitusik, P. (2013). Surface water temperature and ice cover of Tatra Mountains Lakes depend on altitude, topographic shading, and bathymetry. Arctic Antarctic and Alpine Research, 45(1), 77–87. https://doi.org/10.1657/1938-4246-45.1.77

Ode, A., Hagerhall, C. M., & Sang, N. (2010). Analysing Visual Landscape Complexity: Theory and Application. Landscape Research, 35(1), 111–131. https://doi.org/10.1080/01426390903414935

Ogashawara, I., & Brum Bastos, V. d. S. (2012). A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sensing, 4(11), 3596–3618. https://doi.org/10.3390/rs4113596

Oliveira, S., Andrade, H., & Vaz, T. (2011). The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment, 46(11), 2186–2194. https://doi.org/10.1016/j.buildenv.2011.04.034

Papadimitriou, F. (2010). Conceptual modelling of landscape complexity. Landscape Research, 35(5), 563–570. https://doi.org/10.1080/01426397.2010.504913

Peng, J., Jia, J., Liu, Y., Li, H., & Wu, J. (2018). Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sensing of Environment, 215, 255–267. https://doi.org/10.1016/j.rse.2018.06.010

Peng, J., Xie, P., Liu, Y., & Ma, J. (2016). Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sensing of Environment, 173, 145–155. https://doi.org/10.1016/j.rse.2015.11.027

Peng, X., Wu, W., Zheng, Y., Sun, J., Hu, T., & Wang, P. (2020). Correlation analysis of land surface temperature and topographic elements in Hangzhou, China. Scientific Reports, 10(1), 10451. https://doi.org/10.1038/s41598-020-67423-6

Rahman, M. A., Armson, D., & Ennos, A. R. (2015). A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosystems, 18(2), 371–389. https://doi.org/10.1007/s11252-014-0407-7

Rahman, M. A., Moser, A., Roetzer, T., & Pauleit, S. (2017). Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agricultural and Forest Meteorology, 232, 443–456. https://doi.org/10.1016/j.agrformet.2016.10.006

Rasul, A., Balzter, H., & Smith, C. (2015). Spatial variation of the daytime Surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Climate, 14(Part 2), 176–186. https://doi.org/10.1016/j.uclim.2015.09.001

Romme, W. H. (1982). Fire and landscape diversity in Subalpine Forests of Yellowstone National Park. Ecological Monographs, 52(2), 199–221. https://doi.org/10.2307/1942611

Rouse, D. C., & Bunster-Ossa, I. F. (2013). Green infrastructure: A landscape approach. https://caeau.com.ar/wp-content/uploads/2018/11/46.GREEN-INFRAESTRUCTURE.pdf

Rubiano, K. (2019). Distribución de la infraestructura verde y su capacidad de regulación térmica en Bogotá, Colombia [Distribution of the green infrastructure and its thermal regulation capacity in Bogotá, Colombia]. Colombia Forestal, 22(2), 83–100. https://doi.org/10.14483/2256201X.14304

Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power de-mand and electricity consumption of buildings – A review. Energy and Buildings, 98, 119–124. https://doi.org/10.1016/j.enbuild.2014.09.052

Shi, D., Song, J., Huang, J., Zhuang, C., Guo, R., & Gao, Y. (2020). Synergistic cooling effects (SCEs) of urban green-blue spaces on local thermal environment: A case study in Chongqing, China. Sustainable Cities and Society, 55, 102065. https://doi.org/10.1016/j.scs.2020.102065

Shishegar, N. (2015). The impact of green areas on mitigating urban heat island effect: A review. The International Journal of Environmental Sustainability, 9(1), 119–130. https://doi.org/10.18848/2325-1077/CGP/v09i01/55081

Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688. https://doi.org/10.1038/163688a0

Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440. https://doi.org/10.1016/j.rse.2004.02.003

Solecki, W. D., Rosenzweig, C., Parshall, L., Pope, G., Clark, M., Cox, J., & Wiencke, M. (2005). Mitigation of the heat island effect in urban New Jersey. Global Environmental Change Part B: Environmental Hazards, 6(1), 39–49. https://doi.org/10.1016/j.hazards.2004.12.002

Sookhan, N., Margolis, L., & MacIvor, J. S. (2018). Inter-annual thermoregulation of extensive green roofs in warm and cool seasons: Plant selection matters. Ecological Engineering, 123, 10–18. https://doi.org/10.1016/j.ecoleng.2018.08.016

Sun, R., Xie, W., & Chen, L. (2018). A landscape connectivity model to quantify contributions of heat sources and sinks in urban regions. Landscape and Urban Planning, 178, 43–50. https://doi.org/10.1016/j.landurbplan.2018.05.015

Sun, R., & Chen, L. (2012). How can urban water bodies be designed for climate adaptation? Landscape and Urban Planning, 105(1–2), 27–33. https://doi.org/10.1016/j.landurbplan.2011.11.018

Timm, B. C., & McGarigal, K. (2012). Fine-scale remotely-sensed cover mapping of coastal dune and salt marsh ecosystems at Cape Cod Na-tional Seashore using Random Forests. Remote Sensing of Environment, 127, 106–117. https://doi.org/10.1016/j.rse.2012.08.033

United Nations. (2014, July 10). World’s population increasingly urban with more than half living in urban areas. https://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html

Venter, Z. S., Krog, N. H., & Barton, D. N. (2020). Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Nor-way. Science of the Total Environment, 709, 136193. https://doi.org/10.1016/j.scitotenv.2019.136193

Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8

Wang, D., Lau, K. K.-L., Ren, C., Goggins, W. B. I. I. I., Shi, Y., Ho, H. C., Lee, T.-C., Lee, L.-S., Woo, J., & Ng, E. (2019a). The impact of extremely hot weather events on all-cause mortality in a highly urbanized and densely populated subtropical city: A 10-year time-series study (2006–2015). Science of the Total Environment, 690, 923–931. https://doi.org/10.1016/j.scitotenv.2019.07.039

Wang, Y.-C., Shen, J.-K., & Xiang, W.-N. (2018). Ecosystem service of green infrastructure for adaptation to urban growth: Function and configuration. Ecosystem Health and Sustainability, 4(5), 132–143. https://doi.org/10.1080/20964129.2018.1474721

Wang, Y., Shen, J., Yan, W., & Chen, C. (2019b). Effects of landscape development intensity on river water quality in urbanized areas. Sus-tainability, 11(24), 7120. https://doi.org/10.3390/su11247120

Weng, Q., Liu, H., Liang, B., & Lu, D. (2008). The spatial variations of urban land surface temperatures: pertinent factors, zoning effect, and seasonal variability. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(2), 154–166. https://doi.org/10.1109/JSTARS.2008.917869

Weng, Q., Liu, H., & Lu, D. (2007). Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban Ecosystems, 10(2), 203–219. https://doi.org/10.1007/s11252-007-0020-0

Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., & La Rosa, D. (2019). Understanding the relationship between urban blue infrastruc-ture and land surface temperature. Science of the Total Environment, 694, 133742. https://doi.org/10.1016/j.scitotenv.2019.133742

Wu, J., Li, C., Zhang, X., Zhao, Y., Liang, J., & Wang, Z. (2020). Seasonal variations and main influencing factors of the water cooling islands effect in Shenzhen. Ecological Indicators, 117, 106699. https://doi.org/10.1016/j.ecolind.2020.106699

Wu, J., Gao, W., & Tueller, P. T. (1997). Effects of changing spatial scale on the results of statistical analysis with landscape data: A case study. Geographic Information Sciences, 3(1–2), 30–41. https://doi.org/10.1080/10824009709480491

Yang, C., He, X., Wang, R., Yan, F., Yu, L., Bu, K., Yang, J., Chang, L., & Zhang, S. (2017). The effect of urban green spaces on the urban thermal environment and its seasonal variations. Forests, 8(5), 153. https://doi.org/10.3390/f8050153

Yang, G., Yu, Z., Jorgensen, G., & Vejre, H. (2020). How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustainable Cities and Society, 53, 101932. https://doi.org/10.1016/j.scs.2019.101932

Yu, Z., Guo, X., Jorgensen, G., & Vejre, H. (2017). How can urban green spaces be planned for climate adaptation in subtropical cities? Eco-logical Indicators, 82, 152–162. https://doi.org/10.1016/j.ecolind.2017.07.002

Zhang, C., Yue, Q., & Guo, P. (2019). A nonlinear inexact two-stage management model for agricultural water allocation under uncertainty based on the Heihe River water diversion plan. International Journal of Environmental Research and Public Health, 16(11), 1884.
https://doi.org/10.3390/ijerph16111884

Zhang, X. M., Estoque, R. C., & Murayama, Y. (2017a). An urban heat island study in Nanchang City, China based on land surface tempera-ture and social-ecological variables. Sustainable Cities and Society, 32, 557–568. https://doi.org/10.1016/j.scs.2017.05.005

Zhang, X. P., Wang, D., Hao, H., Zhang, F., & Hu, Y. (2017b). Effects of land use/cover changes and urban forest configuration on urban heat islands in a Loess Hilly Region: Case study based on Yan‘an City, China. International Journal of Environmental Research and Public Health, 14(8), 840. https://doi.org/10.3390/ijerph14080840

Zhang, Y., Zhan, Y., Yu, T., & Ren, X. (2017c). Urban green effects on land surface temperature caused by surface characteristics: A case study of summer Beijing metropolitan region. Infrared Physics & Technology, 86, 35–43. https://doi.org/10.1016/j.infrared.2017.08.008

Zhao, N., Jiao, Y., Ma, T., Zhao, M., Fan, Z., Yin, X., Liu, Y., & Yue, T. (2019). Estimating the effect of urbanization on extreme climate events in the Beijing-Tianjin-Hebei region, China. Science of the Total Environment, 688, 1005–1015. https://doi.org/10.1016/j.scitotenv.2019.06.374

Zhao, W., Yan, T., Ding, X., Peng, S., Chen, H., Fu, Y., & Zhou, Z. (2021). Response of ecological quality to the evolution of land use struc-ture in Taiyuan during 2003 to 2018. Alexandria Engineering Journal, 60(1), 1777–1785. https://doi.org/10.1016/j.aej.2020.11.026

Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., & Sobrino, J. A. (2019a). Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 11(1), 48. https://doi.org/10.3390/rs11010048

Zhou, W., Cao, F., & Wang, G. (2019b). Effects of spatial pattern of forest vegetation on urban cooling in a compact megacity. Forests, 10(3), 282. https://doi.org/10.3390/f10030282

Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54–63. https://doi.org/10.1016/j.landurbplan.2011.03.009