Share:


Acetone, xylene and ammonia removal enhancement in the biofilter packed with steam modified biochar

    Luiza Usevičiūtė Affiliation
    ; Edita Baltrėnaitė-Gedienė   Affiliation
    ; Pranas Baltrėnas Affiliation
    ; Susmita Dutta   Affiliation

Abstract

The present study evaluated short-time effect of steam modified biochar with rhamnolipid solution on the removal of different volatile organic and inorganic compounds (acetone, xylene, ammonia) in biofilter with capillary system. Modification of pine wood biochar with steam governed better treatment of pollar acetone and ammonia compounds from the air stream with removal efficiencies of 93% and 96%, respectively. It was related to biochar’s higher average capillary radius, moisture content and lower air velocity. However, removal of xylene was much lower and reached 72% in the case of modified biochar. It can be explained by its higher Henry’s constant, hydrophobicity and non-polarity.

Keyword : gas-phase biofiltration, biochar, air cleaning technologies, steam, rhamnolipid solution, volatile organic compounds, ammonia

How to Cite
Usevičiūtė, L., Baltrėnaitė-Gedienė, E., Baltrėnas, P., & Dutta, S. (2022). Acetone, xylene and ammonia removal enhancement in the biofilter packed with steam modified biochar. Journal of Environmental Engineering and Landscape Management, 30(3), 412–423. https://doi.org/10.3846/jeelm.2022.17412
Published in Issue
Oct 10, 2022
Abstract Views
458
PDF Downloads
402
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Alberta Environment. (2004a). Assessment report on acetone for developing ambient air quality objectives. Toxico-logic Consulting Inc.

Alberta Environment. (2004b). Assessment report on xylenes for developing ambient air quality objectives. Toxico-logic Consulting Inc.

Alberta Environment. (2014). Assessment report on ammonia for developing ambient air quality objectives. WBK and Associates Inc.

Alvarez-Hornos, F. J., Gabaldon, C., Martinez-Soria, V., Martin, M., Marzal, P., & Penya-Roja, J. M. (2007). Biofiltration of ethylbenzene vapours: Influence of the packing material. Bioresource Technology, 99(2), 269–276. https://doi.org/10.1016/j.biortech.2006.12.022

Ameloot, N., Sleutel, S., Das, K. C., Kanagaratnam, J., & De Neve, S. (2015). Biochar amendment to soils with contrasting organic matter level: Effects on N mineralization and biological soil properties. GCB-Bioenergy, 7(1), 135–144. https://doi.org/10.1111/gcbb.12119

Andres, Y., Dumont, E., Le Cloirec, P., & Ramirez-Lopez, E. M. (2007). Wood bark as packing material in a biofilter used for air treatment. Environ-mental Technology, 27(12), 1297–1301. https://doi.org/10.1080/09593332708618747

Atherton, C. S. (1997). Biogenic and biomass burning sources of acetone to the traposphere (Report). Lawrence Livermore National Laboratory. https://doi.org/10.2172/641279

Baltrėnaitė, E., Baltrėnas, P., Bhatnagar, A., Vilppo, T., Selenius, M., Koistinen, A., Dahl, M., & Penttinen, O.-P. (2017). A multicomponent approach to using waste-derived biochar in biofiltration: A case study based on dissimilar types of waste. International Biodeterioration & Biodegradation, 119, 565–576. https://doi.org/10.1016/j.ibiod.2016.10.056

Baltrėnas, P., & Mačaitis, K. (2014). Effectiveness of air treatment using a plate-type biofilter with a capillary system for humidification of packing ma-terial. Environmental Engineering and Management Journal, 13(8), 2063–2072. https://doi.org/10.30638/eemj.2014.229

Baltrėnas, P., Baltrėnaitė, E., & Spudulis, E. (2015a). Biochar form pine and birch morphology and pore structure change by treatment in biofilter. Wa-ter, Air and Soil Pollution, 226, 69. https://doi.org/10.1007/s11270-015-2295-8

Baltrėnas, P., Baltrėnaitė, E., & Usevičiūtė, L. (2019). Bioanglies hidrofiliškumo didinimo įrenginys ir būdas (LT patent No. LT 6661 B). Lithuanian Patent Office.

Baltrėnas, P., Zagorskis, A., & Misevičius, A. (2015b). Research into acetone removal from air by biofiltration using a biofilter with straight structure plates. Biotechnology & Biotechnological Equipment, 29(2), 404–413. https://doi.org/10.1080/13102818.2015.1006413

Bang, J.-H., Oh, I., Kim, S., You, S., Kim, Y., Kwon, H.-J., & Kim, G.-B. (2017). Modeling the effects of pollutant emissions from large industrial complexes on benzene, toluene, and xylene concentrations in urban areas. Environmental Health and Toxicology, 32, 1–12. https://doi.org/10.5620/eht.e2017022

Borbon, A., Gilman, J. B., Kuster, W. C., Grand, N., Chevaillier, S., Colomb, A., Dolgorouky, C., Gros, V., Lopez, M., Sarda-Esteve, R., Hol-loway, J., Stutz, J., Petetin, H., McKeen, S., Beekmann, M., Warneke, C., Parrish, D. D., & Gouw, J. A. (2013). Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris. JGR Atmos-pheres, 118(4), 2041–2057. https://doi.org/10.1002/jgrd.50059

Breton, J. G. C., Breton, R. M. C., Ucan, F. V., Baeza, C. B., Fuentes, M. L. E., Lara, E. R., Marron, M. R., Pacheco, J. A. M., Guzman, A. R., & Chi, M. P. U. (2017). Characterization and sources of aromatic hydrocarbons (BTEX) in the atmosphere of two urban sites located in Yucatan Peninsula in Mexico. Atmosphere, 8(6), 107. https://doi.org/10.3390/atmos8060107

Brischke, C., & Wegener, F. L. (2019). Impact of water holding capacity and moisture content of soil substrates on the moisture content of wood terres-trial microcosms. Forests, 10(6), 485. https://doi.org/10.3390/f10060485

Bruneel, J., Walgraeve, C., Mukurarinda, J., Boon, N., & Van Langenhove, H. (2018). Biofiltration of hexane, acetone and dimethyl sulphide using wood, compost and silicone foam. Journal of Chemical Technology and Biotechnology, 93(8), 2234–2243.

Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H., & Yu, G. (2016). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34, 1091–1102. https://doi.org/10.1016/j.biotechadv.2016.06.007

Colon, J., Martinez-Blanco, J., Gabarrell, X., Rieradevall, J., Font, X., Artola, A., & Sanchez, A. (2009). Performance of an industrial biofilter from a composting plant in the removal of ammonia and VOCs after material replacement. Chemical Technology and Biotechnology, 84(8), 1111–1117. https://doi.org/10.1002/jctb.2139

Costa, S. G. V. A. O., Nitschke, M., Lépine, F., Déziel, E., & Contiero, J. (2010). Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochemistry, 45(9), 1511–1516. https://doi.org/10.1016/j.procbio.2010.05.033

Cui, W., Kang, X., Zhang, X., Zheng, Z., & Cui, X. (2019). Facile synthesis of porous cubic microstructure of Co3O4 from ZIF-67 pyrolysis and its Au doped structure for enhanced acetone gas-sensing. Physica E: Low-dimensional Systems and Nanostructures, 113, 165–171. https://doi.org/10.1016/j.physe.2019.04.026

Deshusses, M. A., & Johnson, C. T. (2000). Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment. Environmental Science and Technology, 34(3), 461–467. https://doi.org/10.1021/es9909172

Dewidar, A. A., & Sorial, G. A. (2022). Effect of rhamnolipids on the fungal elimination of toluene vapor in a biotrickling filter under stressed opera-tional conditions. Environmental Research, 204, 111973. https://doi.org/10.1016/j.envres.2021.111973

Dorado, A. D., Lafuente, F. J., Gabriel, D., & Gemisans, X. (2010). A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environmental Technology, 31(2), 193–204. https://doi.org/10.1080/09593330903426687

Estrada, J. M., Hernandez, S., Munoz, R., & Revah, S. (2013). A comparative study of fungal and bacterial biofiltration treating a VOC mixture. Jour-nal of Hazardous Materials, 250–251, 190–197. https://doi.org/10.1016/j.jhazmat.2013.01.064

European Biochar Certificate. (2012). Guidelines for a sustainable production of biochar. European Biochar Foundation, Arbaz, Switzerland.

European Environment Agency. (2019). Air quality in Europe – 2019 report. https://www.eea.europa.eu/publications/air-quality-in-europe-2019

Gabhi, R., Basile, L., Kirk, D. W., Giorcelli, M., Tagliaferro, A., & Jis, C. Q. (2020). Electrical conductivity of wood biochar monoliths and its de-pendence on pyrolysis temperature. Biochar, 2, 369–378. https://doi.org/10.1007/s42773-020-00056-0

Gabriel, D., Maestre, J. P., Martin, L., Gamisans, X., & Lafuente, J. (2007). Characterisation and performance of coconut fibre as packing material in the removal of ammonia in gas-phase biofilters. Biosystems Engineering, 97(4), 481–490. https://doi.org/10.1016/j.biosystemseng.2007.03.038

Garcia-Jares, C., Barro, R., & Llompart, M. (2012). 1.08 – Indoor air sampling. In Comprehensive sampling and sample preparation (Vol. 1, pp. 125–161). Elsevier. https://doi.org/10.1016/B978-0-12-381373-2.00008-9

Ghasemi, R., Golbabaei, F., Rezaei, S., Pourmand, M. R., Nabizadeh, R., Jafari, M. J., & Masoorian, E. (2020). A comparison of biofiltration perfor-mance based on bacteria and fungi for treating toluene vapors from airflow. AMB Express, 10(1), 8. https://doi.org/10.1186/s13568-019-0941-z

Gospodarek, M., Rybarczyk, P., Brillowska-Dabrowska, A., & Gebicki, J. (2019). The use of various species of fungi in biofiltration of air contami-nated with odorous volatile organic compounds. In B. Kaźmierczak, P. Jadwiszczak, M. Kutyłowska, & U. Miller (Eds.), E3S Web of Conferences (pp. 1–8). https://doi.org/10.1051/e3sconf/201910000021

Groenestijn, J. W., van Heiningen, W. N., & Kraakman, N. J. R. (2011). Biofilters based on the action fungi. Water Science and Technology, 44(9), 227–232. https://doi.org/10.2166/wst.2001.0546

Guo, H., Ling, Z. H., Cheung, K., Wang, D. W., Simpson, I. J., & Balke, D. R. (2013). Acetone in the atmosphere of Hong Kong: abundance, sources and photochemical precursors. Atmospheric Environment, 65, 80–88. https://doi.org/10.1016/j.atmosenv.2012.10.027

Gwenzi, W., Chaukura, N., Wenga, T., & Mtisi, M. (2021). Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions. Science of the Total Environment, 753, 142249. https://doi.org/10.1016/j.scitotenv.2020.142249

Hagemann, N., Schmidt, H.-P., Kagi, R., Bohler, M., Sigmund, G., Maccagnan, A., McArdell, C. S., & Bucheli, T. D. (2020). Wood-based activated biochar to eliminate organic micropollutants from biologically treated wastewater. Science of the Total Environment, 730, 138417. https://doi.org/10.1016/j.scitotenv.2020.138417

Kandyala, R., Raghavendra, S. P. C., & Rajasekharan, S. T. (2010). Xylene: An overview of its health hazards and preventive measures. Journal of Oral and Maxillofacial Pathology, 14(1), 1–5. https://doi.org/10.4103/0973-029X.64299

Kavyashree, B. A., Ramya, N., Sanjay, U. A. M., Chandan, K. B., Shilpa, B. S., Rashmi, M. B. (2015). Ammonia gas removal using biofilter. Interna-tional Advanced Research Journal in Science, Engineering and Technology, 2(7), 110–114. https://doi.org/10.17148/IARJSET.2015.2724

Kennes, C., & Veiga, M. C. (2004). Fungal biocatalysts in the biofiltration of VOC-polluted air. Journal of Biotechnology, 113(1–3), 305–319. https://doi.org/10.1016/j.jbiotec.2004.04.037

Khan, M. A. H., Utembe, S. R., Archibald, A. T., Maxwell, P., Morris, W. C., Xiao, P., Derwent, R. G., Jenkin, M. E., Percival, C. J., Walsh, R. C., Young, T. D. S., Simmonds, P. G., Nickless, G., O’Doherty, S., & Shallcross, D. E. (2015). A study of global atmospheric budget and distribution of acetone using global atmospheric model STOCHEM-CRI. Atmospheric Environment, 112, 269–277. https://doi.org/10.1016/j.atmosenv.2015.04.056

Khan, M. F. S., Wu, J., Liu, B., Cheng, C., Akbar, M., Chai, Y., & Memon, A. (2018). Fluorescence and photophysical properties of xylene isomers in water: With experimental and theoretical approaches. Royal Society Open Science, 5(2), 1–12. https://doi.org/10.1098/rsos.171719

Kraakman, N. J. R., Rocha-Rios, J., & Van Loosdrecht, M. C. M. (2011). Review of mass transfer aspects for biological gas treatment. Applied Micro-biology and Biotechnology, 91(4), 873–886. https://doi.org/10.1007/s00253-011-3365-5

Lebrero, R., Estrada, J. M., Muñoz, R., & Quijano, G. (2014). Deterioration of organic packing materials commonly used in air biofiltration: Effect of VOC-packing interactions. Journal of Environmental Management, 137, 93–100. https://doi.org/10.1016/j.jenvman.2013.11.052

Maestre, J. P., Gemisans, X., Gabriel, D., & Vijayarengan, P. (2005). Comparison of organic packing materials for toluene biofiltration [Conference presentation]. Conference on Biotechniques for Air Pollution Control, Universidade da Coruna.

Masekameni, M. D., Moolla, R., Gulumian, M., & Brouwer, D. (2019). Risk assessment of benzene, toluene, ethyl benzene, and xylene concentrations from the combustion of coal in a controlled laboratory environment. International Journal of Environmental Research and Public Health, 16(1), 95. https://doi.org/10.3390/ijerph16010095

Mo, Y., Li, H., Zhou, K., Ma, X., Guo, Y., Wang, S., & Li, L. (2019). Acetone adsorption to (BeO)12, (MgO)12 and (ZnO)12 nanoparticles and their graphene composites: A density functional theory (DFT) study. Applied Surface Science, 469, 962–973. https://doi.org/10.1016/j.apsusc.2018.11.079

Molhave, L., & Nielsen, G. D. (1992). Interpretation and limitations of the concept “Total volatile organic compounds” (TVOC) as indicator of human responses to exposures of volatile organic compounds (VOC) in indoor air. Indoor Air, 2, 65–77. https://doi.org/10.1111/j.1600-0668.1992.01-22.x

Morgado, J., Merlin, G., Gonthier, Y., & Eyraud, A. (2004). A mechanistic model for m-xylene treatment with peat-bed biofilter. Environmental Tech-nology, 25, 123–132. https://doi.org/10.1080/09593330409355444

Murawska, A., & Prus, P. (2021). The progress o sustainable management of ammonia emissions from agriculture in European Union states including Poland – variation trends, and economic conditions. Sustainability, 13(3), 1035. https://doi.org/10.3390/su13031035

Nair, A. A., & Yu, F. (2020). Quantification of atmospheric ammonia concentrations: A review of its measurement and modeling. Atmosphere, 11(10), 1092. https://doi.org/10.3390/atmos11101092

National Research Council. (2010). Acute exposure guideline levels for selected airborne chemicals. National Academic Press.

Niaz, K., Bahadar, H., Maqbool, F., & Abdollahi, M. (2015). A review of environmental and occupational exposure to xylene and its health concerns. EXCLI Journal, 14, 1167–1186.

Pagans, E., Font, X., & Sanchez, A. (2005). Biofiltration for ammonia removal from composting exhaust gases. Chemical Engeering Journal, 113(2–3), 105–110. https://doi.org/10.1016/j.cej.2005.03.004

Pearson, J. K. (2019). European solvent VOC emission inventories based on industry-wide information. Atmospheric Environment, 204, 118–124. https://doi.org/10.1016/j.atmosenv.2019.02.014

Rajapaksha, A. U., Vithanage, M., Lee, S. S., Seo, D.-C., Tsang, D. C. W., & Ok, Y. S. (2015). Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethanize sorption. Journal of Soils and Sediments, 16, 889–895. https://doi.org/10.1007/s11368-015-1325-x

Reyna, M., & Lee, J. S. (2015). Xylenes, CAS Registry Numbers: Xylene mixture: 1330-20-7, m-Xylene: 108-38-3, o-Xylene: 95-47-6, p-Xylene: 106-42-3 (Development support document). Texas Commission On Environmental Quality.

Revah, S., Vergara-Fernandez, A., & Hernandez, S. (2011). Fungal biofiltration for the elimination of gaseous pollutants from air. In A. Lucia, & D. Leitao (Eds.), Mycofactories (pp. 109–120). Bentham Science Publishers. https://doi.org/10.2174/978160805223311101010109

Sakunkoo, P., Phonphinyo, S., Maneenin, N., Jirapornkul, C., Limmongkon, Y., Rayubkul, J., Thongtip, S., & Sangkham, S. (2021). Comparison of volatile organic compound concentrations an ambient air among different source areas around Khon Kaen, Thailand. Atmosphere, 12(12), 1694. https://doi.org/10.3390/atmos12121694

Shim, T., Yoo, J., Ryu, C., Park, Y.-K., & Jung, J. (2015). Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresource Technology, 197, 85–90. https://doi.org/10.1016/j.biortech.2015.08.055

Tsang, Y. F., Wang, Y., Wang, H., Yang, Y., Zhang, Y., & Chua, H. (2017). Biodegradation of ammonia in biofiltration systems: Changes of metabolic products and microbial communities. In I. Zhu (Ed.), Nitrification and denitrification. IntechOpen. https://doi.org/10.5772/intechopen.68155

United Nations Economic Commission for Europe. (2019). Assessment report on ammonia – 2019. https://unece.org/fileadmin/DAM/env/documents/2019/AIR/EMEP_WGE_Joint_Session/Assessment_Report_on_Ammonia_20190827.pdf

Usevičiūtė, L., Baltrėnaitė-Gedienė, E., & Baltrėnas, P. (2021). Hydrophilicity enhancement of low-temperature lignocellulosic biochar modified by physical-chemical techniques. Journal of Material Cycles and Waste Management, 23(12), 1838–1854. https://doi.org/10.1007/s10163-021-01255-y

Wei, L., Luo, L.-Q., Zhang, Z.-Q., Li, M.-Y., Si, L.-F., & Li, J. (2011). Damage in ovary tissue of mouse exposed to xylene. Chinese Journal of Veterinary Science, 09.

World Health Organization. (2003). Xylenes in drinking water. Background document for development of WHO Guidelines for Drinking water Quality. Geneva, Switzerland.

Yalcin, E., Tecer, L. H., Yurdakul, S., & Tuncel, G. (2020). Potential sources and measured concentrations of VOCs in Balikesir ambient atmosphere. Atmosfera, 33(3), 1–31. https://doi.org/10.20937/ATM.52646

Yousefinejad, A., Zamir, S. M., & Nosrati, M. (2019). Fungal elimination of toluene vapor in one- and two-liquid phase biotrickling filters: Effects of inlet concentration, operating temperature, and peroxidase enzyme activity. Journal of Environmental Management, 251, 109554. https://doi.org/10.1016/j.jenvman.2019.109554

Zagorskis, A., Baltrėnas, P., Vasarevičius, S., & Rimeika, M. (2012). Investigations on the sustainability of a biofilter with activated packing materials of different origins. Environmental Engineering and Management Journal, 11(4), 773–782. https://doi.org/10.30638/eemj.2012.100

Zeng, Y., Tian, S., & Pan, Y. (2018). Revealing the sources of atmospheric ammonia: A review. Air Pollution, 4, 189–197. https://doi.org/10.1007/s40726-018-0096-6

Zhang, J., Zhang, L., Sun, Q., & Yang, P. (2008). Removal of high concentration of ammonia gas in a hybrid biofilter [Conference presentation]. 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai. https://doi.org/10.1109/ICBBE.2008.466

Zhang, X., Gao, B., heng, Y., Hu, X., Creamer, A. E., Annabele, M. D., & Li, Y. (2017). Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. Bioresource Technology, 245, 606–614. https://doi.org/10.1016/j.biortech.2017.09.025

Zhou, J., Xue, S., Liu, S., Xu, N., Xin, F., Zhang, W., Jiang, M., & Dong, W. (2019). High Di-rhamnolipid production using Pseudomonas aeruginose KT1115, separation of Mono/Di-rhamnolipids, and evaluation of their properties. Frontiers in Bioengineering and Biotechnology, 7, 245.