Share:


Mesoclimatic analysis of non-precipitation periods in Lithuania

    Joana Ūselytė Affiliation
    ; Arūnas Bukantis Affiliation

Abstract

In this paper, climatic analysis of non-precipitation periods (NPP) in Lithuania was performed, assessing their recurrence and trends from 1991 to 2020 using two criteria – when precipitation was <0.1 mm per day all year round and when precipitation was <1 mm per day during the warm period – and analysing typical atmospheric circulation in the middle troposphere and sea level during the longest NPP (≥20 days). From 1990 to 2020, NPP were most frequent in the Middle Lithuania lowland (according to both criteria), in Southern and South-western Lithuania (daily precipitation <0.1 mm) and in part of Eastern Lithuania (daily precipitation <1 mm), and least frequent in part of the Samogitian highland and in part of the Baltic Highlands (according to both criteria). NPP recurred most often in the spring months, as this is associated with a higher number of days with anticyclonic circulation and powerful anticyclones recorded. Based on the growth trend of NPP of various durations in Lithuania from 1990 to 2020, in the last decade NPP have become more frequent, but only a few stations have shown reliable trends. Analysis of the atmospheric circulation during the longest NPP (≥20 days) showed that NPP were mostly determined by the Azores anticyclone ridge or anticyclone over Northern, Central or Eastern Europe regardless of the time of year. The atmospheric circulation conditions for the formation of long NPP varied more in the cold period than in the warm period, but NPP often lasted ≥20 days only at one or a few stations.

Keyword : daily precipitation, dry period, atmospheric circulation, warm period, cold period, geopotential height, sea level pressure

How to Cite
Ūselytė, J., & Bukantis, A. (2023). Mesoclimatic analysis of non-precipitation periods in Lithuania. Journal of Environmental Engineering and Landscape Management, 31(2), 142–156. https://doi.org/10.3846/jeelm.2023.19017
Published in Issue
May 26, 2023
Abstract Views
294
PDF Downloads
307
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Asmala, E., Osburn, C. L., Paerl, R. W., & Paerl, H. W. (2021). Elevated organic carbon pulses persist in estuarine environment after major storm events. Limnology and Oceanography Letters, 6(1), 43–50. https://doi.org/10.1002/lol2.10169

Biniak-Pierog, M., Chalfen, M., Zyromski, A., Doroszewski, A., & Jóźwicki, T. (2020). The soil moisture during dry spells model and its verification. Resources, 9, 85. https://doi.org/10.3390/resources9070085

Brunetti, M., Maugeri, M., Nanni, T., & Navarra, A. (2002). Droughts and extreme events in regional daily Italian precipitation series. International Journal of Climatology, 22(5), 543–558. https://doi.org/10.1002/joc.751

Byun, H. R., & Wilhite, D. A. (1999). Objective quantification of drought severity and duration. Journal of Climate, 12, 2747–2756. . https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2

Chen, D., & Chen, H. W. (2013). Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environmental Development, 6, 69–79. https://doi.org/10.1016/j.envdev.2013.03.007

Chen, Y., Li, W., Jiang, X., Zhai, P., & Luo, Y. (2021). Detectable intensification of hourly and daily scale precipitation extremes across eastern China. Journal of Climate, 34(3), 1185–1201. https://doi.org/10.1175/JCLI-D-20-0462.1

Christensen, O. B., & Kjellström, E. (2018). Projections for temperature, precipitation, wind, and snow in the Baltic Sea region until 2100. Oxford University Press. https://doi.org/10.1093/acrefore/9780190228620.013.695

Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65. https://doi.org/10.1002/wcc.81

Dai, A., & Zhao, T. (2017). Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change, 144(3), 519–533. https://doi.org/10.1007/s10584-016-1705-2

Dawid, M., & Janik, G. (2018). Atmospheric water infiltration intensity in non-rainfall periods under conditionsof varied soil moisture. International Agrophysics, 32, 305–312. https://doi.org/10.1515/intag-2017-0024

Fleig, A. K., Tallaksen, L. M., Hisdal, H., & Hannah, D. M. (2011). Regional hydrological drought in north-western Europe: Linking a new Regional Drought Area Index with weather types. Hydrological Processes, 25(7), 1163–1179. https://doi.org/10.1002/hyp.7644

Gomboš, M., Kandra, B., Tall, A., & Pavelková, D. (2019). Analysis of non-rainfall periods and their impacts on the soil water regime. IntechOpen. https://doi.org/10.5772/intechopen.82399

Güner Bacanli, Ü. (2017). Trend analysis of precipitation and drought in the Aegean region, Turkey. Meteorological Applications, 24(2), 239–249. https://doi.org/10.1002/met.1622

Hänsel, S. (2020). Changes in the characteristics of dry and wet periods in Europe (1851–2015). Atmosphere, 11(10), 1080. https://doi.org/10.3390/atmos11101080

Hlásny, T., Barka, I., Sitková, Z., Bucha, T., Konôpka, M., & Lukáč, M. (2015). MODIS-based vegetation index has sufficient sensitivity to indicate stand-level intra-seasonal climatic stress in oak and beech forests. Annals of Forest Science, 1(72), 109–125. https://doi.org/10.1007/s13595-014-0404-2

Hodnebrog, O., Myhre, G., Samset, B. H., Alterskjær, K., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Forster, P. M., Kasoar, M., Kirkeväg, A., Lamarque, J. F., Olivié, D., Richardson, T. B., Shawki, D., Shindell, D., Shine, K. P., Stier, P., Takemura, T., … Watson-Parris, D. (2019). Water vapour adjustments and responses differ between climate drivers. Atmospheric Chemistry and Physics, 19(20), 12887–12899. https://doi.org/10.5194/acp-19-12887-2019

Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., & Pegion, P. (2012). On the increased frequency of mediterranean drought. Journal of Climate, 25(6), 2146–2161. https://doi.org/10.1175/JCLI-D-11-00296.1

Hurrell, J. W. (1995). Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science, 269(5224), 676–679. https://doi.org/10.1126/science.269.5224.676

Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., Shaw, M. R., Loik, M. E., Smith, S. D., Tissue, D. T., Zak, J. C., Weltzin, J. F., Pockman, W. T., Sala, O. E., Haddad, B. M., Harte, J., Koch, G. W., Schwinning, S., Small, E. E., & Williams, D. G. (2004). Convergence across biomes to a common rain-use efficiency. Nature, 429(6992), 651–654. https://doi.org/10.1038/nature02561

Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., & Haslinger, K. (2017). The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences, 21(3), 1397–1419. https://doi.org/10.5194/hess-21-1397-2017

Intergovernmental Panel on Climate Change. (2021). Climate change 2021: The physical science basis (Contribution of Working Group I to the sixth assessment report). Cambridge University Press. https://doi.org/10.1260/095830507781076194

Jaagus, J., Briede, A., Rimkus, E., & Remm, K. (2010). Precipitation pattern in the Baltic countries under the influence of large-scale atmospheric circulation and local landscape factors. International Journal of Climatology, 30(5), 705–720. https://doi.org/10.1002/joc.1929

Jaagus, J., Briede, A., Rimkus, E., & Sepp, M. (2018). Changes in precipitation regime in the Baltic countries in 1966–2015. Theoretical and Applied Climatology, 131(1–2), 1–11, 433–443. https://doi.org/10.1007/s00704-016-1990-8

Kjellström, E., & Ruosteenoja, K. (2007). Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Climatic Change, 81(Suppl. 1), 281–291. https://doi.org/10.1007/s10584-006-9219-y

López-Moreno, J. I., & Vicente-Serrano, S. M. (2008). Positive and negative phases of the wintertime North Atlantic Oscillation and drought occurrence over Europe: A multitemporal-scale approach. Journal of Climate, 21(6), 1220–1243. https://doi.org/10.1175/2007JCLI1739.1

Mačiulytė, V., Rimkus, E., Valiukas, D., & Stonevičius, E. (2022). Long-term precipitation events in the eastern part of the Baltic Sea region. Oceanologia, 65(1), 141–150. https://doi.org/10.1016/j.oceano.2022.02.003

Orth, R., Zscheischler, J., & Seneviratne, S. I. (2016). Record dry summer in 2015 challenges precipitation projections in Central Europe. Scientific Reports, 6, 2–10. https://doi.org/10.1038/srep28334

Parry, S., Prudhomme, C., Hannaford, J., & Lloyd-Hughes, B. (2013). Examining the spatio-temporal evolution and characteristics of large-scale European droughts.

Rahmstorf, S., & Coumou, D. (2011). Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences, 108(44), 17905–17909. https://doi.org/10.1073/PNAS.1101766108

Rimkus, E., Kažys, J., Valiukas, D., & Stankūnavičius, G. (2014). The atmospheric circulation patterns during dry periods in Lithuania. Oceanologia, 56(2), 223–239. https://doi.org/10.5697/oc.56-2.223

Rimkus, E., Maciulyte, V., Stonevicius, E., & Valiukas, D. (2020). A revised agricultural drought index in Lithuania. Agricultural and Food Science, 29(4), 359–371. https://doi.org/10.23986/afsci.92150

Rimkus, E., Valiukas, D., Kažys, J., Gečaite, I., & Stonevičius, E. (2012). Dryness dynamics of the Baltic Sea region. Baltica, 25(2), 129–149. https://doi.org/10.5200/baltica.2012.25.13

Rutgersson, A., Jaagus, J., Schenk, F., & Stendel, M. (2014). Observed changes and variability of atmospheric parameters in the Baltic Sea region during the last 200 years. Climate Research, 61(2), 177–190. https://doi.org/10.3354/cr01244

Shen, X., Liu, B., & Lu, X. (2018). Weak cooling of cold extremes versus continued warming of hot extremes in China during the recent global surface warming hiatus. Journal of Geophysical Research: Atmospheres, 123(8), 4073–4087. https://doi.org/10.1002/2017JD027819

Sousa, P. M., Trigo, R. M., Aizpurua, P., Nieto, R., Gimeno, L., & Garcia-Herrera, R. (2011). Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Natural Hazards and Earth System Science, 11(1), 33–51. https://doi.org/10.5194/nhess-11-33-2011

Spinoni, J., Naumann, G., & Vogt, J. V. (2017). Pan-European seasonal trends and recent changes of drought frequency and severity. Global and Planetary Change, 148, 113–130. https://doi.org/10.1016/j.gloplacha.2016.11.013

Spinoni, J., Naumann, G., Vogt, J. V., & Barbosa, P. (2015). The biggest drought events in Europe from 1950 to 2012. Journal of Hydrology: Regional Studies, 3, 509–524. https://doi.org/10.1016/j.ejrh.2015.01.001

Srdjevic, B., Srdjevic, Z., & Benka, P. (2021). Stochastic process of extreme rainless periods in Serbia. International Journal of Climatology, 41(Suppl. 1), E1119–E1136. https://doi.org/10.1002/joc.6757

Srdjevic, B., Srdjevic, Z., & Benka, P. (2022). Extreme rainless periods in Pannonian Basin. International Journal of Climatology, 42(16), 8568–8590. https://doi.org/10.1002/joc.7748

Steila, D. (2006). Encyclopedia of world climatology. Choice Reviews Online, 43(07), 43–3766. https://doi.org/10.5860/CHOICE.43-3766

Stonevičius, E., Rimkus, E., Kažys, J., Bukantis, A., Kriaučiūnienė, J., Akstinas, V., Jakimavičius, D., Povilaitis, A., Ložys, L., Kesminas, V., Virbickas, T., & Pliūraitė, V. (2018). Recent aridity trends and future projections in the Nemunas river basin. Climate Research, 75(2), 143–154. https://doi.org/10.3354/cr01514

Wikipedia. (2006). Physical map and geomorphological subdivision of Lithuania. https://en.wikipedia.org/wiki/Lithuania#/media/File:LithuaniaPhysicalMap-en.png