Share:


A polypropylene-degrading Psychrobacillus strain isolated from a landfill

    Yunhan Li Affiliation
    ; Jindi Zhao Affiliation
    ; Panlin Wang Affiliation
    ; Zhidong Zhang Affiliation
    ; Lihui Zhang Affiliation

Abstract

Polypropylene (PP) is one of the most widely used plastics around the world. However, PP is recalcitrant to degradation under natural conditions, and its accumulation is increasingly threatening the environment. The stain LICME-ZWZR-10 was isolated from a landfill using PP as its sole carbon source. It was found to share 99.50% genetic similarity with Psychrobacillus sp. AK 1817. Upon incubation with Psychrobacillus sp. LICME-ZWZR-10, PP particles developed a rough surface with depressions and cracks, which were discerned through scanning electron microscopy (SEM). At a moderate temperature of 20 °C, this strain successfully degraded PP particles with an average diameter of 850 μm, leading to a 9±0.40% reduction in particle weight over a span of 30 days. Fourier transform infrared spectroscopy (FTIR) released the emergence of carbonyl and ether-based functional groups on PP. Furthermore, genomic analysis unveiled the presence of a laccase-encoding gene in Psychrobacillus sp. LICME-ZWZR-10, suggesting its potential involvement in the biodegradation of PP.

Keyword : polypropylene, Psychrobacillus sp., biodegradation, genomic analysis

How to Cite
Li, Y., Zhao, J., Wang, P., Zhang, Z., & Zhang, L. (2024). A polypropylene-degrading Psychrobacillus strain isolated from a landfill. Journal of Environmental Engineering and Landscape Management, 32(2), 85–92. https://doi.org/10.3846/jeelm.2024.20966
Published in Issue
Feb 29, 2024
Abstract Views
330
PDF Downloads
333
SM Downloads
130
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aravinthan, A., Arkatkar, A., Juwarkar, A. A., & Doble, M. (2016). Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. Preparative Biochemistry & Biotechnology, 46(2), 109–115. https://doi.org/10.1080/10826068.2014.985836

Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution, 231, 1552–1559. https://doi.org/10.1016/j.envpol.2017.09.043

Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15–21. https://doi.org/10.1016/j.marpolbul.2017.11.036

Bai, B., Jin, H., Fan, C., Cao, C., Wei, W., & Cao, W. (2019). Experimental investigation on liquefaction of plastic waste to oil in supercritical water. Waste Management, 89, 247–253. https://doi.org/10.1016/j.wasman.2019.04.017

Canopoli, L., Coulon, F., & Wagland, S. T. (2020). Degradation of excavated polyethylene and polypropylene waste from landfill. Science of the Total Environment, 698, Article 134125. https://doi.org/10.1016/j.scitotenv.2019.134125

Carbery, M., O’Connor, W., & Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 115, 400–409. https://doi.org/10.1016/j.envint.2018.03.007

Chen, W. H., Sun, S. C., Ocreto, J. B., Nguyen, T. B., Lam, S. S., Park, Y. K., & Dong, C. D. (2023). Thermodegradation characterization of microplastics: Dispersion effect and pyrolysis kinetics by artificial intelligence. Chemical Engineering Journal, 457, Article 141285. https://doi.org/10.1016/j.cej.2023.141285

Chiang, C. M., Wang, T. Y., Ke, A. N., Chang, T. S., & Wu, J. Y. (2017). Biotransformation of ergostane triterpenoid antcin K from Antrodia cinnamomea by soil-isolated Psychrobacillus sp. AK 1817. Catalysts, 7(10), Article 299. https://doi.org/10.3390/catal7100299

Cho, J. Y., Park, S. L., Kim, S. H., Jung, H. J., Cho, D., Kim, B. C., Bhatia, S. K., Gurav, R., Park, S. H., Park, K., & Yang, Y. H. (2022). Novel Poly(butylene adipate-co-terephthalate)-degrading Bacillus sp. JY35 from wastewater sludge and its broad degradation of various bioplastics. Waste Management, 144, 1–10. https://doi.org/10.1016/j.wasman.2022.03.003

Choi, J. Y., Kim, S. C., & Lee, P. C. (2020). Comparative genome analysis of Psychrobacillus strain PB01, isolated from an iceberg. Journal of Microbiology and Biotechnology, 30(2), 237–243. https://doi.org/10.4014/jmb.1909.09008

Craig, I. H., White, J. R., & Kin, P. C. (2005). Crystallization and chemi-crystallization of recycled photo-degraded polypropylene. Polymer, 46(2), 505–512. https://doi.org/10.1016/j.polymer.2004.11.019

Delre, A., Goudriaan, M., Morales, V. H., Vaksmaa, A., Ndhlovu, R. T., Baas, M., Keijzer, E., de Groot, T., Zeghal, E., Egger, M., Röckmann, T., & Niemann, H. (2023). Plastic photodegradation under simulated marine conditions. Marine Pollution Bulletin, 187, Article 114544. https://doi.org/10.1016/j.marpolbul.2022.114544

Devi, K. N., Raju, P., Santhanam, P., Kumar, S. D., Krishnaveni, N., Roopavathy, J., & Perumal, P. (2021). Biodegradation of low-density polyethylene and polypropylene by microbes isolated from Vaigai River, Madurai, India. Archives of Microbiology, 203(10), 6253–6265. https://doi.org/10.1007/s00203-021-02592-0

Faiza, W., Firouzi, A., Islam, M. R., Sumdani, G., & Taher, A. (2021). Degradation analysis of epoxy resin composites reinforced with bioprotein: Effects of hydrolysis using papain and bromelain. Polymer Composites, 42(6), 2717–2727. https://doi.org/10.1002/pc.26007

Ghatge, S., Yang, Y., Ahn, J.-H., & Hur, H.-G. (2020). Biodegradation of polyethylene: A brief review. Applied Biological Chemistry, 63(1), Article 27. https://doi.org/10.1186/s13765-020-00511-3

Guo, Y., Zhou, J., Tang, Y., Ma, Q., Zhang, J., Ji, C., & Zhao, L. (2020). Characterization and genome analysis of a zearalenone-degrading Bacillus velezensis strain ANSB01E. Current Microbiology, 77(2), 273–278. https://doi.org/10.1007/s00284-019-01811-8

Habib, S., Iruthayam, A., Abd Shukor, M. Y., Alias, S. A., Smykla, J., & Yasid, N. A. (2020). Biodeterioration of untreated polypropylene microplastic particles by Antarctic bacteria. Polymers, 12(11), Article 2616. https://doi.org/10.3390/polym12112616

Islam, M. R., Beg, M. D. H., & Gupta, A. (2013). Characterization of laccase-treated kenaf fibre reinforced recycled polypropylene composites. Bioresources, 8(3), 3753–3770. https://doi.org/10.15376/biores.8.3.3753-3770

Jeon, H. J., & Kim, M. N. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene. International Biodeterioration & Biodegradation, 115, 244–249. https://doi.org/10.1016/j.ibiod.2016.08.025

Jeon, J. M., Park, S. J., Choi, T. R., Park, J. H., Yang, Y. H., & Yoon, J. J. (2021). Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polymer Degradation and Stability, 191, Article 109662. https://doi.org/10.1016/j.polymdegradstab.2021.109662

Kalčíková, G. (2020). Aquatic vascular plants – A forgotten piece of nature in microplastic research. Environmental Pollution, 262, Article 114354. https://doi.org/10.1016/j.envpol.2020.114354

Kato, C., Honma, A., Sato, S., Okura, T., Fukuda, R., & Nogi, Y. (2019). Poly 3-hydroxybutyrate-co-3-hydroxyhexanoate films can be degraded by the deep-sea microbes at high pressure and low temperature conditions. High Pressure Research, 39(2), 248–257. https://doi.org/10.1080/08957959.2019.1584196

Kedzierski, M., Lechat, B., Sire, O., Le Maguer, G., Le Tilly, V., & Bruzaud, S. (2020). Microplastic contamination of packaged meat: Occurrence and associated risks. Food Packaging and Shelf Life, 24, Article 100489. https://doi.org/10.1016/j.fpsl.2020.100489

Kowalczyk, A., Chyc, M., Ryszka, P., & Latowski, D. (2017). Erratum to: Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Environmental Science and Pollution Research, 24(6), Article 5985. https://doi.org/10.1007/s11356-016-8267-8

Lim, B. K. H., & San Thian, E. (2022). Biodegradation of polymers in managing plastic waste – A review. Science of the Total Environment, 813, Article 151880. https://doi.org/10.1016/j.scitotenv.2021.151880

Liu, X. R., Zhang, Y. M., Sun, Q. F., Liu, Z. H., Zhao, Y. L., Fan, A. L., & Su, H. J. (2022). Rapid colonization and biodegradation of untreated commercial polyethylene wrap by a new strain of Bacillus velezensis C5. Journal of Environmental Management, 301, Article 113848. https://doi.org/10.1016/j.jenvman.2021.113848

Lozano, Y. M., & Rillig, M. C. (2020). Effects of microplastic fibers and drought on plant communities. Environmental Science & Technology, 54(10), 6166–6173. https://doi.org/10.1021/acs.est.0c01051

Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., & Nava-Saucedo, J. E. (2008). Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere, 73(4), 429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064

Nakatani, H., Ohshima, Y., Uchiyama, T., & Suguru, M. (2022). Degradation and fragmentation behavior of polypropylene and polystyrene in water. Scientific Reports, 12(1), Article 18501. https://doi.org/10.1038/s41598-022-23435-y

Pham, V. H. T., Jeong, S. W., & Kim, J. (2015). Psychrobacillus soli sp. nov., capable of degrading oil, isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 65, 3046–3052. https://doi.org/10.1099/ijs.0.000375

Pires, J. P., Miranda, G. M., de Souza, G. L., Fraga, F., Ramos, A. D., de Araujo, G. E., Ligabue, R. A., Azevedo, C. M. N., Lourega, R. V., & de Lima, J. E. A. (2019). Investigation of degradation of polypropylene in soil using an enzymatic additive. Iranian Polymer Journal, 28(12), 1045–1055. https://doi.org/10.1007/s13726-019-00766-8

Rana, A. K., Thakur, M. K., Saini, A. K., Mokhta, S. K., Moradi, O., Rydzkowski, T., Alsanie, W. F., Wang, Q. L., Grammatikos, S., & Thakur, V. K. (2022). Recent developments in microbial degradation of polypropylene: Integrated approaches towards a sustainable environment. Science of the Total Environment, 826, Article 154056. https://doi.org/10.1016/j.scitotenv.2022.154056

Ren, L., Men, L., Zhang, Z., Guan, F., Tian, J., Wang, B., Wang, J., Zhang, Y., & Zhang, W. (2019). Biodegradation of polyethylene by Enterobacter sp. D1 from the guts of wax moth Galleria mellonella. International Journal of Environmental Research and Public Health, 16(11), Article 1941. https://doi.org/10.3390/ijerph16111941

Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, Ar­ticle 442. https://doi.org/10.3389/fmicb.2020.00442

Santo, M., Weitsman, R., & Sivan, A. (2013). The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation, 84, 204–210. https://doi.org/10.1016/j.ibiod.2012.03.001

Sawpan, M. A., Islam, M. R., Beg, M. D. H., & Pickering, K. (2019). Effect of accelerated weathering on physico-mechanical properties of polylactide bio-composites. Journal of Polymers and the Environment, 27(5), 942–955. https://doi.org/10.1007/s10924-019-01405-2

Skariyachan, S., Patil, A. A., Shankar, A., Manjunath, M., Bachappanavar, N., & Kiran, S. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation and Stability, 149, 52–68. https://doi.org/10.1016/j.polymdegradstab.2018.01.018

Sun, Y., Zhang, Y., Hao, X., Zhang, X., Ma, Y., & Niu, Z. (2023). A novel marine bacterium Exiguobacterium marinum a-1 isolated from in situ plastisphere for degradation of additive–free polypropylene. Environmental Pollution, 336, Article 122390. https://doi.org/10.1016/j.envpol.2023.122390

Tang, C. C., Chen, H. I., Brimblecombe, P., & Lee, C. L. (2019). Morphology and chemical properties of polypropylene pellets degraded in simulated terrestrial and marine environments. Marine Pollution Bulletin, 149, Article 110626. https://doi.org/10.1016/j.marpolbul.2019.110626

Thew, X. E. C., Lo, S. C., Ramanan, R. N., Tey, B. T., Huy, N. D., & Wei, O. C. (2023). Enhancing plastic biodegradation process: Strategies and opportunities. Critical Reviews in Biotechnology, 1–18. https://doi.org/10.1080/07388551.2023.2170861

Várdai, R., Schäffer, A., Ferdinánd, M., Lummerstorfer, T., Jerabek, M., Gahleitner, M., Faludi, G., Móczó, J., & Pukánszky, B. (2022). Crystalline structure and reinforcement in hybrid PP composites. Journal of Thermal Analysis and Calorimetry, 147(1), 145–154. https://doi.org/10.1007/s10973-021-11053-1

Wang, P. L., Zhao, J. D., Ruan, Y. Q., Cai, X. Y., Li, J., Zhang, L. H., & Huang, H. (2022). Degradation of Polypropylene by the Pseudomonas aeruginosa strains LICME WZH-4 and WGH-6. Journal of Polymers and the Environment, 30(9), 3949–3958. https://doi.org/10.1007/s10924-022-02480-8

Wróbel, M., Szymańska, S., Kowalkowski, T., & Hrynkiewicz, K. (2023). Selection of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation. Microbiological Research, 267, Article 127251. https://doi.org/10.1016/j.micres.2022.127251

Yang, S. S., Ding, M. Q., Ren, X. R., Zhang, Z. R., Li, M. X., Zhang, L. L., Pang, J. W., Chen, C. X., Zhao, L., Xing, D. F., Ren, N. Q., Ding, J., & Wu, W. M. (2022). Impacts of physical-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics. Science of the Total Environment, 828, Article 154458. https://doi.org/10.1016/j.scitotenv.2022.154458

Yasin, N. M., Akkermans, S., & Van Impe, J. F. M. (2022). Enhancing the biodegradation of (bio)plastic through pretreatments: A critical review. Waste Management, 150, 1–12. https://doi.org/10.1016/j.wasman.2022.06.004

Zhang, F., Zhao, Y. T., Wang, D. D., Yan, M. Q., Zhang, J., Zhang, P. Y., Ding, T. G., Chen, L., & Chen, C. (2021). Current technologies for plastic waste treatment: A review. Journal of Cleaner Production, 282, Article 124523. https://doi.org/10.1016/j.jclepro.2020.124523

Zhang, N., Ding, M. Z., & Yuan, Y. J. (2022a). Current advances in biodegradation of polyolefins. Microorganisms, 10(8), Article 1537. https://doi.org/10.3390/microorganisms10081537

Zhang, Y., Pedersen, J. N., Eser, B. E., & Guo, Z. (2022b). Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnology Advances, 60, Article 107991. https://doi.org/10.1016/j.biotechadv.2022.107991