Share:


Effects of sludge pellet mulch on soil physicochemical properties and soil enzyme activities

    Qian Mo Affiliation
    ; Haiyan Sun Affiliation
    ; Yuying Wang Affiliation
    ; Shuying Song Affiliation
    ; Xue Zhang Affiliation
    ; Ting He Affiliation
    ; Chengrui Zhuo Affiliation

Abstract

The drinking-water treatment sludge (DWTS) possesses intricate characteristics, which restrict its broad applicability. To tackle this issue, we employed DWTS obtained from the Minhang District of Shanghai as the primary constituent, blending it with a low-alkaline curing material to produce pelletized mulch. This investigation primarily focuses on evaluating the environmental safety of sludge pellet mulch (SPM) and scrutinizing alterations in soil physicochemical properties at various mulch thicknesses. The outcomes affirm the durability of SPM and the compliance of eight heavy metals with prescribed standards concerning their concentration, pH, and EC values. After applying SPM, noteworthy enhancements were observed in soil moisture, organic matter content, available nutrients, and the activity of four enzymes. Furthermore, a reduction in soil temperature was observed. For urban landscape mulching, SPM within the range of 9.6–28.8 kg/m2 emerged as the preferred choice, yielding the most favorable overall soil quality improvements.

Keyword : drinking-water treatment sludge, sludge pellet mulch, soil physicochemical properties, soil enzyme activities

How to Cite
Mo, Q., Sun, H., Wang, Y., Song, S., Zhang, X., He, T., & Zhuo, C. (2024). Effects of sludge pellet mulch on soil physicochemical properties and soil enzyme activities. Journal of Environmental Engineering and Landscape Management, 32(2), 169–181. https://doi.org/10.3846/jeelm.2024.20978
Published in Issue
Apr 17, 2024
Abstract Views
210
PDF Downloads
198
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahmad, A., Yaseen, M., Ahmed, I., Niamat, B., Gondal, A. H., Aziz, A., Irfan, M., Ilyas, M. F., & Jafir, M. (2022). Response of mulching on soil physical and biochemical properties and functions. In K. Akhtar, M. Arif, M. Riaz, & H. Wang (Eds.), Mulching in agroecosystems: Plants, soil & environment (pp. 89–100). Springer Nature. https://doi.org/10.1007/978-981-19-6410-7_6

Ahmad, T., Ahmad, K., & Alam, M. (2016). Sustainable management of water treatment sludge through 3‘R’ concept. Journal of Cleaner Production, 124, 1–13. https://doi.org/10.1016/j.jclepro.2016.02.073

Antonkiewicz, J., Kołodziej, B., Bielińska, E. J., & Gleń-Karolczyk, K. (2019). Research on the uptake and use of trace elements from municipal sewage sludge by multiflora rose and Virginia fanpetals. Journal of Elementology, 24(3), 987–1005. https://doi.org/10.5601/jelem.2018.23.4.1757

Baddam, R., Reddy, G. B., Raczkowski, C., & Cyrus, J. S. (2016). Activity of soil enzymes in constructed wetlands treated with swine wastewater. Ecological Engineering, 91, 24–30. https://doi.org/10.1016/j.ecoleng.2016.01.021

Bao, S. (2005). Analysis of soil agrochemistry (3rd ed). China Agriculture Press.

Bierza, W., Czarnecka, J., Błońska, A., Kompała-Bąba, A., Hutniczak, A., Jendrzejek, B., Bakr, J., Jagodziński, A. M., Prostański, D., & Woźniak, G. (2023). Plant diversity and species composition in relation to soil enzymatic activity in the novel ecosystems of urban–industrial landscapes. Sustainability, 15(9), Article 7284. https://doi.org/10.3390/su15097284

BingPeng, Q., XiangYang, S., SuYan, L., Hua, Z., XinYu, W., KaiYi, X., & BingHui, Y. (2018). Manufacturing process and hydrological characteristics of ecological mulching mats made from green waste. Journal of Beijing Forestry University, 40(10), 77–85. https://doi.org/10.13332/j.1000-1522.20170465

Caniani, D., Masi, S., Mancini, I. M., & Trulli, E. (2013). Innovative reuse of drinking water sludge in geo-environmental applications. Waste Management, 33(6), 1461–1468. https://doi.org/10.1016/j.wasman.2013.02.007

Chakraborty, D., Nagarajan, S., Aggarwal, P., Gupta, V. K., Tomar, R. K., Garg, R. N., Sahoo, R. N., Sarkar, A., Chopra, U. K., Sarma, K. S. S., & Kalra, N. (2008). Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural Water Management, 95(12), 1323–1334. https://doi.org/10.1016/j.agwat.2008.06.001

Chalker-Scott, L. (2007). Impact of mulches on landscape plants and the environment – A review. Journal of Environmental Horticulture, 25(4), 239–249. https://doi.org/10.24266/0738-2898-25.4.239

Condron, L. M., Turner, B. L., & Cade‐Menun, B. J. (2005). Chemistry and dynamics of soil organic phosphorus. Phosphorus: Agriculture and the Environment, 46, 87–121. https://doi.org/10.2134/agronmonogr46.c4

Dassanayake, K. B., Jayasinghe, G. Y., Surapaneni, A., & Hetherington, C. (2015). A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Management, 38, 321–335. https://doi.org/10.1016/j.wasman.2014.11.025

Dick, R. P. (1994). Soil enzyme activities as indicators of soil quality. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, & B. A. Stewart (Eds.), Defining soil quality for a sustainable environment (pp. 107–124). John Wiley & Sons, Ltd. https://doi.org/10.2136/sssaspecpub35.c7

Dick, R. P. (1997). Soil enzyme activities as integrative indicators of soil health. In C. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological indicators of soil health (pp. 121–156). Cab International.

Fairbourn, M. L. (1973). Effect of gravel mulch on crop yield. Agronomy Journal, 65(6), 925–928. https://doi.org/10.2134/agronj1973.00021962006500060024x

Faisal, A. A. H., Al-Wakel, S. F. A., Assi, H. A., Naji, L. A., & Naushad, Mu. (2020). Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater. Journal of Water Process Engineering, 33, Article 101112. https://doi.org/10.1016/j.jwpe.2019.101112

García-Ruiz, R., Ochoa, V., Hinojosa, M. B., & Carreira, J. A. (2008). Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 40(9), 2137–2145. https://doi.org/10.1016/j.soilbio.2008.03.023

Ge, T., Nie, S., Wu, J., Shen, J., Xiao, H., Tong, C., Huang, D., Hong, Y., & Iwasaki, K. (2011). Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: A case study. Journal of Soils and Sediments, 11(1), 25–36. https://doi.org/10.1007/s11368-010-0293-4

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, & Standardization Administration of China. (2009). The disposal of sludge from municipal wastewater treatment plant – The quality of sludge used in gardens or parks (GB/T 23486-2009). Beijing, China.

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, & Standardization Administration of China. (2010). Lightweight aggregates and its test methods – Part 2: Test methods for lightweight aggregates (GB/T 17431.2-2010). Beijing, China.

Guan, S. (1986). In soil enzymes and methods for research. China Agriculture Press.

Håkansson, I., & Lipiec, J. (2000). A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil and Tillage Research, 53(2), 71–85. https://doi.org/10.1016/S0167-1987(99)00095-1

Heil, D. M., & Barbarick, K. A. (1989). Water treatment sludge influence on the growth of sorghum-sudangrass. Journal of Environmental Quality, 18(3), 292–298. https://doi.org/10.2134/jeq1989.00472425001800030008x

Ippolito, J. A., Barbarick, K. A., & Redente, E. F. (1999). Co-application effects of water treatment residuals and biosolids on two range grasses. Journal of Environmental Quality, 28(5), 1644–1650. https://doi.org/10.2134/jeq1999.00472425002800050031x

Iqbal, R., Raza, M. A. S., Valipour, M., Saleem, M. F., Zaheer, M. S., Ahmad, S., Toleikiene, M., Haider, I., Aslam, M. U., & Na­zar, M. A. (2020). Potential agricultural and environmental benefits of mulches–A review. Bulletin of the National Research Centre, 44(1), Article 75. https://doi.org/10.1186/s42269-020-00290-3

Jodaugienė, D., Pupalienė, R., Sinkevičienė, A., Marcinkevičienė, A., Žebrauskaitė, K., Baltaduonytė, M., & Čepulienė, R. (2010). The influence of organic mulches on soil biological properties. Žemdirbystė-Agriculture, 97, 33–40.

Kader, M. A., Senge, M., Mojid, M. A., & Ito, K. (2017). Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research, 168, 155–166. https://doi.org/10.1016/j.still.2017.01.001

Kai, M., Takazumi, K., Adachi, H., Wasaki, J., Shinano, T., & Osaki, M. (2002). Cloning and characterization of four phosphate transporter cDNAs in tobacco. Plant Science, 163(4), 837–846. https://doi.org/10.1016/S0168-9452(02)00233-9

Kołodziejczyk, M., Antonkiewicz, J., & Kulig, B. (2017). Effect of living mulches and conventional methods of weed control on weed occurrence and nutrient uptake in potato. International Journal of Plant Production, 11(2), 276–284. http://ijpp.gau.ac.ir//article_3424_e69d66817514b0ab6d2ca0e1c0996e8e.pdf

Koski, R., & Jacobi, W. (2004). Tree pathogen survival in chipped wood mulch. Arboriculture & Urban Forestry, 30(3), 165–171. https://doi.org/10.48044/jauf.2004.020

Lin, W., Zhan, X., Zhan, T. L., Chen, Y., Jin, Y., & Jiang, J. (2014). Effect of FeCl3-conditioning on consolidation property of sewage sludge and vacuum preloading test with integrated PVDs at the Changan landfill, China. Geotextiles and Geomembranes, 42(3), 181–190. https://doi.org/10.1016/j.geotexmem.2013.12.008

Masciandaro, G., Ceccanti, B., Benedicto, S., Lee, H. C., & Cook, H. F. (2004). Enzyme activity and C and N pools in soil following application of mulches. Canadian Journal of Soil Science, 84(1), 19–30. https://doi.org/10.4141/S03-045

Meng, Z., Wu, F., Guo, W., Yu, T., & Yu, S. (2013). State-of-the-art of excess sludge reduction technology. China Water & Wastewater, 29(8), 26–28. https://doi.org/10.3969/j.issn.1000-4602.2013.08.007

Ministry of Environmental Protection of the People’s Republic of China. (2016). Solid waste – Determination of 22 metal elements – Inductively coupled plasma optical emission spectrometry (HJ 781-2016). Beijing, China.

Nayeri, D., & Mousavi, S. A. (2022). A comprehensive review on the coagulant recovery and reuse from drinking water treatment sludge. Journal of Environmental Management, 319, Article 115649. https://doi.org/10.1016/j.jenvman.2022.115649

Ni, X., Song, W., Zhang, H., Yang, X., & Wang, L. (2016). Effects of mulching on soil properties and growth of tea olive (Osmanthus fragrans). PLoS ONE, 11(8), Article e0158228. https://doi.org/10.1371/journal.pone.0158228

Nowak, J., Kaklewski, K., & Ligocki, M. (2004). Influence of selenium on oxidoreductive enzymes activity in soil and in plants. Soil Biology and Biochemistry, 36(10), 1553–1558. https://doi.org/10.1016/j.soilb io.2004.07.002

Oh, T.-K., Nakaji, K., Chikushi, J., & Park, S.-G. (2010). Effects of the application of water treatment sludge on growth of Lettuce (Lactuca sativa L.) and changes in soil properties. Journal of the Faculty of Agriculture, Kyushu University, 55(1), 15–20. https://doi.org/10.5109/17795

Piotrowska-Długosz, A., & Charzyński, P. (2015). The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the Ekranic Technosols of Toruń (Poland). Journal of Soils and Sediments, 15, 47–59. https://doi.org/10.1007/s11368-014-0963-8

Qu, B., Li, S., Sun, X., Yun, B., Zhang, H., Wang, X., & Xiong, K. (2018). Effects of different mulching materials on reducing soil dust from bare soil. Polish Journal of Environmental Studies, 28(1), 303–310. https://doi.org/10.15244/pjoes/81695

Roldán, A., Salinas-García, J. R., Alguacil, M. M., & Caravaca, F. (2005). Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Applied Soil Ecology, 30(1), 11–20. https://doi.org/10.1016/j.apsoil.2005.01.004

Safari, N., Kazemi, F., & Tehranifar, A. (2021). Examining temperature and soil moisture contents of mulches in the urban landscaping of an arid region. Desert, 26(2), 139–156. https://doi.org/10.22059/jdesert.2020.256170.1006639

Sinkevičienė, A., Jodaugienė, D., Pupalienė, R., & Urbonienė, M. (2009). The influence of organic mulches on soil properties and crop yield. Agronomy Research, 7(1), 485–491.

Splawski, C. E., Regnier, E. E., Harrison, S. K., Bennett, M. A., & Metzger, J. D. (2016). Weed suppression in pumpkin by mulches composed of organic municipal waste materials. HortScience, 51(6), 720–726. https://doi.org/10.21273/HORTSCI.51.6.720

Stelli, S., Hoy, L., Hendrick, R., & Taylor, M. (2018). Effects of different mulch types on soil moisture content in potted shrubs. Water SA, 44(3), 459–503. https://doi.org/10.4314/wsa.v44i3.17

Thakur, M., & Kumar, R. (2021). Mulching: Boosting crop productivity and improving soil environment in herbal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 20, Article 100287. https://doi.org/10.1016/j.jarmap.2020.100287

Titshall, L. W., & Hughes, J. C. (2005). Characterisation of some South African water treatment residues and implications for land application. Water SA, 31(3), 299–308. https://doi.org/10.4314/wsa.v31i3.5219

Wan, Y., Hui, X., He, X., Xue, J., Feng, D., Chen, Z., Li, J., Liu, L., & Xue, Q. (2022). Utilization of flue gas desulfurization gypsum to produce green binder for dredged soil solidification: Strength, durability, and planting performance. Journal of Cleaner Production, 367, Article 133076. https://doi.org/10.1016/j.jclepro.2022.133076

Wang, H., Wang, C., Zhao, X., & Wang, F. (2015). Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China. Agricultural Water Management, 154, 20–28. https://doi.org/10.1016/j.agwat.2015.02.010

Xie, M., Li, F., Li, S., Gao, D., & Liu, X. (2013). Study on the effect of sludge from water purification plants on the growth of potted plants such as tall fescue and marigold. Water & Wastewater Engineering, 39(1), 134–137. https://doi.org/10.3969/j.issn.1002-8471.2013.01.032

Xie, X., Pu, L., Wang, Q., Zhu, M., Xu, Y., & Zhang, M. (2017). Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Science of the Total Environment, 607, 1419–1427. https://doi.org/10.1016/j.scito tenv.2017.05.185

Yang, G., Zhang, G., & Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Research, 78, 60–73. https://doi.org/10.1016/j.watres.2015.04.002

Yu, Z. H., Gui, Y., Zhang, Q., & Kong, X. Y. (2013). Experimental study on the stabilization effects of dredged sludge by fly ash or phosphogypsum. Advanced Materials Research, 689, 342–347. https://doi.org/10.4028/www.scientific.net/AMR.689.342

Yuping, Z., Zilong, W., & Yifeng, Z. (2020). Research and application of soil solidifying agent. E3S Web of Conferences, 165, Article 03026. https://doi.org/10.1051/e3sconf/202016503026

Zan, H. E., Hai-Yan, W., Hua-Han, T., Li, W., & Yue-Xi, Z. (2009). Research progress in wastewater treatment processes with sludge reduction. China Water & Wastewater, 25(8), 1–7. https://doi.org/10.3321/j.issn:1000-4602.2009.08.001

Zhan, T. L., Zhan, X., Lin, W., Luo, X., & Chen, Y. (2014). Field and laboratory investigation on geotechnical properties of sewage sludge disposed in a pit at Changan landfill, Chengdu, China. Engineering Geology, 170, 24–32. https://doi.org/10.1016/j.enggeo.2013.12.006

Zhan, X.-J., Lin, W.-A., Zhan, L.-T., & Chen, Y.-M. (2015). Field implementation of FeCl3-conditioning and vacuum preloading for sewage sludge disposed in a sludge lagoon: A case study. Geosynthetics International, 22(4), 327–338. https://doi.org/10.1680/gein.15.00015

Zhang, H., Yang, J., Yu, W., Luo, S., Peng, L., Shen, X., Shi, Y., Zhang, S., Song, J., Ye, N., Li, Y., Yang, C., & Liang, S. (2014). Mechanism of red mud combined with Fenton’s reagent in sewage sludge conditioning. Water Research, 59, 239–247. https://doi.org/10.1016/j.watres.2014.04.026

Zhao, D., Li, F., & Wang, R. (2012). The effects of different urban land use patterns on soil microbial biomass nitrogen and enzyme activities in urban area of Beijing, China. Acta Ecologica Sinica, 32(3), 144–149. https://doi.org/10.1016/j.chnaes.2012.04.005

Zhao, Y., Nzihou, A., Ren, B., Lyczko, N., Shen, C., Kang, C., & Ji, B. (2021). Waterworks sludge: An underrated material for beneficial reuse in water and environmental engineering. Waste and Biomass Valorization, 12(8), 4239–4251. https://doi.org/10.1007/s12649-020-01232-w