Analysis and evaluation of the biogas purification technologies from H2S
Abstract
H2S concentrations in biogas are limited by environmental regulations. Because these gases are toxic to human health, cause corrosion, and damage the combined heat and power (CHP) engines and other metallic parts after burning. Hence, the following requirements must be met by a biogas purification method: 1 – high H2S removal efficiency (RE), 2 – stability over a long period of time, 3 – low cost, 4 – minimal biogas dilution, and 5 – straightforward structure. There are various physical, chemical, and biological technologies, which can be undertaken to meet earlier mentioned criteria and efficiently remove H2S from biogas. In this study, electrochemical oxidation, adsorption by zeolite, pressure swing adsorption, adsorption on activated carbon, adsorption on metal oxides, adsorption on nano-particles, metal sulfide precipitation, water scrubbing, membrane separation, organic solvents (amine), microaeration, and purification by sulfur-oxidizing bacteria (anoxic, aerobic, anaerobic), will be introduced, while their pros and cons are compared and discussed in detail.
Article in English.
H2S valymo iš biodujų technologijų analizė ir vertinimas
Santrauka
H2S koncentracijas biodujose reglamentuoja aplinkosaugos teisės aktai. Šios dujos yra nuodingos žmonių sveikatai, sukelia koroziją bei pažeidžia šilumos ir elektros (ŠEV) variklius bei kitus mechanizmus. Taigi, taikant biodujų valymo metodą, turi būti tenkinami šie reikalavimai: 1 – aukštas H2S šalinimo efektyvumas (ŠE), 2 – stabilumas ilgą laiką, 3 – maža kaina, 4 – minimalus biodujų skiedimas ir 5 – paprasta struktūra. Yra įvairių fizinių, cheminių ir biologinių technologijų, kurias galima naudoti, kad atitiktų anksčiau minėtus kriterijus ir būtų efektyviai pašalintas H2S iš biodujų. Šiame tyrime aprašoma elektrocheminė oksidacija, adsorbcija naudojant ceolitą, slėgio svyravimo adsorbcija, adsorbcija su aktyvuota anglimi, adsorbcija ant metalų oksidų, adsorbcija ant nanodalelių, metalo sulfido nusodinimas, vandens šveitimas, membranų atskyrimas, organiniai tirpikliai (aminai ir mikrobai). Tyrimo metu bus pristatytas gryninimas sierą oksiduojančiomis bakterijomis (anoksinėmis, aerobinėmis, anaerobinėmis), o jų privalumai ir trūkumai bus lyginami tarpusavyje ir išsamiai analizuojami.
Reikšminiai žodžiai: H2S, biodujos, valymo metodai, fizinė technologija, cheminė technologija, biologinė technologija.
Keyword : H2S, biogas, purification methods, physical technologies, chemical technologies, biological technologies
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alkhatib, I. I. I., Khalifa, O., Bahamon, D., Abu-Zahra, M. R. M., & Vega, L. F. (2021). Sustainability criteria as a game changer in the search for hybrid solvents for CO2 and H2S removal. Separation and Purification Technology, 277, 119516. https://doi.org/10.1016/j.seppur.2021.119516
Aryal, N., Zhang, Y., Bajracharya, S., Pant, D., & Chen, X. (2022). Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading. Chemosphere, 291, 132843. https://doi.org/10.1016/j.chemosphere.2021.132843
Bahraminia, S., Anbia, M., & Koohsaryan, E. (2020). Hydrogen sulfide removal from biogas using ion-exchanged nanostructured NaA zeolite for fueling solid oxide fuel cells. International Journal of Hydrogen Energy, 45(55), 31027–31040. https://doi.org/10.1016/j.ijhydene.2020.08.091
Choudhury, A., & Lansing, S. (2021). Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. Journal of Environmental Chemical Engineering, 9(1), 104837. https://doi.org/10.1016/j.jece.2020.104837
Cuimei, B., Wei, G., Chao, T., Jun, L., & Xiaohua, L. (2018). Dynamic control design and simulation of biogas pressurized water scrubbing process. IFAC-PapersOnLine, 51(18), 560–565. https://doi.org/10.1016/j.ifacol.2018.09.365
Das, J., Nolan, S., & Lens, P. N. L. (2022a). Simultaneous removal of H2S and NH3 from raw biogas in hollow fibre membrane bioreactors. Environmental Technology & Innovation, 28, 102777. https://doi.org/10.1016/j.eti.2022.102777
Das, J., Ravishankar, H., & Lens, P. N. L. (2022b). Biological biogas purification: Recent developments, challenges and future prospects. Journal of Environmental Management, 304, 114198. https://doi.org/10.1016/j.jenvman.2021.114198
Franco-Morgado, M., Toledo-Cervantes, A., González-Sánchez, A., Lebrero, R., & Muñoz, R. (2018). Integral (VOCs, CO2, mercaptans and H2S) photosynthetic biogas upgrading using innovative biogas and digestate supply strategies. Chemical Engineering Journal, 354, 363–369. https://doi.org/10.1016/j.cej.2018.08.026
Gao, Y., Han, Z., Zhai, G., Dong, J., & Pan, X. (2022). Oxidation absorption of gaseous H2S using UV/S2O82− advanced oxidation process: Performance and mechanism. Environmental Technology & Innovation, 25, 102124. https://doi.org/10.1016/j.eti.2021.102124
Ghimire, A., Gyawali, R., Lens, P. N. L., & Lohani, S. P. (2021). Technologies for removal of hydrogen sulfide (H2S) from biogas. In Emerging technologies and biological systems for biogas upgrading (pp. 295–320). Elsevier. https://doi.org/10.1016/B978-0-12-822808-1.00011-8
Haosagul, S., Prommeenate, P., Hobbs, G., & Pisutpaisal, N. (2020). Sulfur-oxidizing bacteria in full-scale biogas cleanup system of ethanol industry. Renewable Energy, 150, 965–972. https://doi.org/10.1016/j.renene.2019.11.140
Hou, N., Xia, Y., Wang, X., Liu, H., Liu, H., & Xun, L. (2018). H2S biotreatment with sulfide-oxidizing heterotrophic bacteria. Biodegradation, 29, 511–524. https://doi.org/10.1007/s10532-018-9849-6
Irani, V., Tavasoli, A., & Vahidi, M. (2018). Preparation of amine functionalized reduced graphene oxide/methyl diethanolamine nanofluid and its application for improving the CO2 and H2S absorption. Journal of Colloid and Interface Science, 527, 57–67. https://doi.org/10.1016/j.jcis.2018.05.018
Jia, T., Sun, S., Zhao, Q., Peng, Y., & Zhang, L. (2022). Extremely acidic condition (pH<1.0) as a novel strategy to achieve high-efficient hydrogen sulfide removal in biotrickling filter: Biomass accumulation, sulfur oxidation pathway and microbial analysis. Chemosphere, 294, 133770. https://doi.org/10.1016/j.chemosphere.2022.133770
Jiao, Y., Han, S., Zhang, W., Guo, M., Cheng, F., & Zhang, M. (2022). Self-assembled CuO-bearing aerogel-like hollow Al2O3 microspheres for room temperature dry capture of H2S. Chemical Egineering Research and Design, 177, 174–183. https://doi.org/10.1016/j.cherd.2021.10.030
Juntranapaporn, J., Vikromvarasiri, N., Soralump, C., & Pisutpaisal, N. (2019). Hydrogen sulfide removal from biogas in biotrickling filter system inoculated with Paracoccus pantotrophus. International Journal of Hydrogen Energy, 44(56), 29554–29560. https://doi.org/10.1016/j.ijhydene.2019.03.069
Khalil, M., Berawi, M. A., Heryanto, R., & Rizalie, A. (2019). Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, 105, 323–331. https://doi.org/10.1016/j.rser.2019.02.011
Khan, M. U., Lee, J. T. E., Bashir, M. A., Dissanayake, P. D., Ok, Y. S., Tong, Y. W., Shariati, M. A., Wu, S., & Ahring, B. K. (2021). Current status of biogas upgrading for direct biomethane use: A review. Renewable and Sustainable Energy Reviews, 149, 111343. https://doi.org/10.1016/j.rser.2021.111343
Konkol, D., Popiela, E., Skrzypczak, D., Izydorczyk, G., Mikula, K., Moustakas, K., Opaliński, S., Korczyński, M., Witek-Krowiak, A. W., & Chojnacka, K. (2022). Recent innovations in various methods of harmful gases conversion and its mechanism in poultry farms. Environmental Research, 214, 113825. https://doi.org/10.1016/j.envres.2022.113825
Kulawong, S., Artkla, R., Sriprapakhan, P., & Maneechot, P. (2022). Biogas purification by adsorption of hydrogen sulfide on NaX and Ag-exchanged NaX zeolites. Biomass and Bioenergy, 159, 106417. https://doi.org/10.1016/j.biombioe.2022.106417
Ma, C., Zhao, Y., Chen, H., Liu, Y., Huang, R., & Pan, J. (2022). Biochars derived from by-products of microalgae pyrolysis for sorption of gaseous H2S. Journal of Environmental Chemical Engineering, 10(3), 107370. https://doi.org/10.1016/j.jece.2022.107370
Ma, M., & Zou, C. (2018). Effect of nanoparticles on the mass transfer process of removal of hydrogen sulfide in biogas by MDEA. International Journal of Heat and Mass Transfer, 127, 385–392. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.091
Moradi, H., Azizpour, H., Bahmanyar, H., & Mohammadi, M. (2020). Molecular dynamics simulation of H2S adsorption behavior on the surface of activated carbon. Inorganic Chemistry Communications, 118, 108048. https://doi.org/10.1016/j.inoche.2020.108048
Nhut, H. H., Thanh, V. T., & Le, L. T. (2020). Removal of H2S in biogas using biotrickling filter: Recent development. Process Safety and Environmental Protection, 144, 297–309. https://doi.org/10.1016/j.psep.2020.07.011
Prasertcharoensuk, P., Promtongkaew, A., Tawatchai, M., Marquez, V., Jongsomjit, B., Tahir, M., Praserthdam, S., & Praserthda, P. (2022). A review on sensitivity of operating parameters on biogas catalysts for selective oxidation of Hydrogen Sulfide to elemental sulfur. Chemosphere, 301, 134579. https://doi.org/10.1016/j.chemosphere.2022.134579
Pudi, A., Rezaei, M., Signorini, V., Andersson, M. P., Baschetti, M. G., & Mansouri, S. S. (2022). Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 298, 121448. https://doi.org/10.1016/j.seppur.2022.121448
Santos-Clotas, E. S., Cabrera-Codony, A. C., Comas, J., & Martín, M. J. (2020). Biogas purification through membrane bioreactors: Experimental study on siloxane separation and biodegradation. Separation and Purification Technology, 238, 116440. https://doi.org/10.1016/j.seppur.2019.116440
Shi, M., Xiong, W., Zhang, X., Ji, J., Hu, X., Tu, Z., & Wu, Y. (2022). Highly efficient and selective H2S capture by task-specific deep eutectic solvents through chemical dual-site absorption. Separation and Purification Technology, 283, 120167. https://doi.org/10.1016/j.seppur.2021.120167
Su, J.-J., & Hong, Y.-Y. (2020). Removal of hydrogen sulfide using a photocatalytic livestock biogas desulfurizer. Renewable Energy, 149, 181–188. https://doi.org/10.1016/j.renene.2019.12.068
Torres, R. A., Marín, D., Rodero, M. D. R., Pascual, C., Sanchez, A. G., Crespo, I. G., Lebrero, R., & Torre, R. M. (2020). Biogas treatment for H2S, CO2, and other contaminants removal. In From biofiltration to promising options in gaseous fluxes biotreatment (pp. 153–176). Elsevier. https://doi.org/10.1016/B978-0-12-819064-7.00008-X
Vikrant, K., Kailasa, S. K., Tsang, D. C. W., Lee, S. S., Kumar, P., Giri, B. S., Singh, R. S., & Kim, K.-H. (2018). Biofiltration of hydrogen sulfide: Trends and challenges. Journal of Cleaner Production, 187, 131–147. https://doi.org/10.1016/j.jclepro.2018.03.188
Wang, S., Nam, H., Lee, D., & Nam, H. (2022). H2S gas adsorption study using copper impregnated on KOH activated carbon from coffee residue for indoor air purification. Journal of Environmental Chemical Engineering, 10(6), 108797. https://doi.org/10.1016/j.jece.2022.108797
Watsuntorn, W., Khanongnuch, R., Chulalaksananukul, W., Rene, E. R., & Lens, P. N. L. (2020). Resilient performance of an anoxic biotrickling filter for hydrogen sulfide removal from a biogas mimic: Steady, transient state and neural network evaluation. Journal of Cleaner Production, 249, 119351. https://doi.org/10.1016/j.jclepro.2019.119351
Xu, Y., Chen, Y., Ma, C., Qiao, W., Wang, J., & Ling, L. (2022). Functionalization of activated carbon fiber mat with bimetallic active sites for NH3 and H2S adsorption at room temperature. Separation and Purification Technology, 305, 122335. https://doi.org/10.1016/j.seppur.2022.122335
Zhang, Y., Kawasaki, Y., Oshita, K., Takaoka, M., Minami, D., Inoue, G., & Tanaka, T. (2021). Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas. Renewable Energy, 168, 119–130. https://doi.org/10.1016/j.renene.2020.12.058
Zhang, X., Lawan, I., Danhassan, U. A., He, Y., Qi, R., Wu, A., Sheng, K., & Lin, H. (2022). Advances in technologies for in situ desulfurization of biogas. Advances in Bioenergy, 7, 99–137. https://doi.org/10.1016/bs.aibe.2022.05.001