Share:


Investigation of protective composite coatings on the basis of nickel metal matrix

Abstract

In the present study, the opportunity to improve the coatings properties using re-melting technique is studied. In the aim to determine the influence of the re-melting on the properties of coatings, the experimental study was performed. The surface of S235J0 steel was coated using three different re-melting methods with different heating duration. The mixture of NiCrFeCSiB alloy powders and carbides of WC type was used for spraying. The principal characteristics of the sprayed coatings were examined and compared with each other. The tests allowed concluding that the introduction of the re-melting process of different duration has tangible impact upon the structure, hardness and wearing resistance of the coatings.


Article in Lithuanian.


Apsauginių kompozicinių dangų metalinės nikelio matricos pagrindu tyrimas


Santrauka


Šiame darbe tiriamos NiCrFeCSiB+40 % WC purkštinės dangos, suformuotos taikant dvipakopį purškimo / perlydymo procesą. Užpurkštos dangos perlydytos taikant tris skirtingus kaitinimo būdus – liepsninį, indukcinį ir krosnyje. Ištirta perlydytų dangų mikrostruktūros evoliucija, cheminių elementų koncentracijos pasiskirstymas dangose, mikrokietumas ir atsparumas dilimui esant skirtingam kaitinimo laikui. Nustatyta, kas visi trys kaitinimo būdai formuoja panašią dangų mikrostruktūrą; dangų morfologiniai ypatumai ir savybės priklauso nuo kaitinimo laiko. Optimali dangos struktūra susiformuoja siaurame kaitinimo trukmės intervale ir turi tokius požymius: tanki metalinė matrica, metalurginis ryšys tarp dangos ir substrato, WC karbidai, nespėję ištirpti metalinėje matricoje ir tolygiai pasiskirstę dangoje. Tokios struktūros dangų kietumas yra didžiausias, atsparumas dilimui geriausias ir gera adhezija su substratu. Šiame darbe tokia struktūra buvo gauta kaitinant užpurkštą dangą neutralia acetileno ir deguonies liepsna 2 min po vonelės susidarymo; dangos kietumas siekė 880 HK.


Reikšminiai žodžiai: Ni-WC dangos, terminis purškimas, mikrokietumas, mikrostruktūra.

Keyword : Ni-WC coatings, thermal spray, hardness, microstructure

How to Cite
Gendvilis, A., & Škamat, J. (2019). Investigation of protective composite coatings on the basis of nickel metal matrix. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 11. https://doi.org/10.3846/mla.2019.7066
Published in Issue
Feb 1, 2019
Abstract Views
3135
PDF Downloads
417
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Cai, B., Tan, Y., He, L., Tan, H., & Gao, L. (2013). Tribological properties of TiC particles reinforced Ni-based alloy composite coatings. Transactions of Nonferrous Metals Society of China, 23, 1681-1688. https://doi.org/10.1016/S1003-6326(13)62648-5

Cobalt, N., & Alloys, T. (2000). ASM Specialty Handbook. ASM International.

Erfanmanesh, M., Abdollah-Poura, H., Mohammadian-Semnani, H., & Shoja-Razavi, R. (2018). Kinetics and oxidation behavior of laser clad WC-Co and Ni/WC-Co coatings. Ceramics International, 44, 12805-12814. https://doi.org/10.1016/j.ceramint.2018.04.087

Kim, H. J., Hwang, S. Y., Lee, C. H., & Juvanon, P. (2003). Assesment of wear performance of flame sprayed and fused Ni-based coatings. Surface and Coatings Technology, 172, 262-269. https://doi.org/10.1016/S0257-8972(03)00348-7

Li, Q., Songb, G. M., Zhang, Y. Z., Lei, T. C., & Chena, W. Z. (2003). Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC. Wear, 254, 222-229. https://doi.org/10.1016/S0043-1648(03)00007-3

Liang, G. Y., & Wong, T. T. (1997). Investigation of microstructure of laser cladding Ni-WC layer on AI-Si Alloy. Journal of Matererials Engineering and Performance, 6, 41-45. https://doi.org/10.1007/s11665-997-0030-3

Ortiz, A., García, A., Cadenas, M., Fernández, M. R., & Cuetos, J. M. (2017). WC particles distribution model in the cross-section of laser cladded NiCrBSi+WC coatings, for different wt% WC. Surface and Coating Technology, 324, 298-306. https://doi.org/10.1016/j.surfcoat.2017.05.086

Shu, D., Li, Z., Zhang, K., Yao, C., Li, D., & Dai, Z. (2018). In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding. Materials Letters, 195, 178-181. https://doi.org/10.1016/j.matlet.2017.02.076

Sidhu, T. S., Prakash, S., & Agrawal, R. D. (2006). Hot corrosion and performance of nickel-based coatings. Current Science, 90(1), 41-47.

Weng, Z., Wang, A., Wu, X., Wang, Y., & Yang, Z. (2016). Wear resistance of diode laser-clad Ni/WC composite coatings at different temperatures. Surface and Coating Technology, 304, 283-292. https://doi.org/10.1016/j.surfcoat.2016.06.081

Xu, J. S., Zhang, X. C., Xuan, F. Z., Wang, Z. D., & Tu, S. T. (2012). Microstructure and sliding wear resistance of laser cladded WC/Ni composite coatings with different contents of WC particle. Journal of Matererials Engineering and Performance, 21, 1904-1911. https://doi.org/10.1007/s11665-011-0109-8

Zhou, S., Dai, X., & Zeng, X. (2009). Effects of processing parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cladding. Applied Surface Science, 255, 8494-8500. https://doi.org/10.1016/j.ap-susc.2009.05.161

Zhou, S., Zeng, X., Hu, Q., & Huang, Y. (2008). Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization. Applied Surface Science, 255, 1646-1653. https://doi.org/10.1016/j.apsusc.2008.04.003