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Abstract. Integrity Management Program (IMP) for oil and gas pipeline system demands a robust risk assessment 
method, which needs fully utilize the expert knowledge on the empirical data and the ambiguous cause(s) – effect(s) 
failure mechanism and then keep a good balance between precision and practicality. A new method, Rule Based Fuzzy 
Synthetic Evaluation (RB-FSE) which combines Fuzzy Synthetic Evaluation (FSE) with Fuzzy Logic (FLo) is proposed 
in this paper. It is applied to the pipeline risk assessment for Third-Party Damage (TPD). The proposed method is 
compared with scoring-type method in a case study. Results indicate that the relative assessment values from RB-FSE 
model could better support risk-ranking and decision-making in the IMP. 
Keywords: pipeline transport; integrity management program; fuzzy synthetic evaluation; fuzzy logic; third-party damage.

Abbreviations

AL – Activity Level;
API – American Petroleum Institute;

ASME – American Society of Mechanical Engineers;
CCM – Chain Comparison Method;

FIS – Fuzzy Inference System;
FL – Failure Likelihood;

FLo – Fuzzy Logic;
FSE – Fuzzy Synthetic Evaluation;

HAL – Hazardous Activity Level;
HCAs – High Consequence Areas;

IM – Integrity Management Program;
MCDM – Multi-Criteria Decision-Making;
PHSMA – Pipeline and Hazardous Materials Safety Ad-

ministration;
PM – Preventive Measure;

RB-FSE – Rule Based Fuzzy Synthetic Evaluation;
SA – Security Attribute;

TPD – Third-Party Damage.

Introduction 

Since pipelines were generally recognized to be the safest 
and the most economical mode to transport hazardous 
substances, especially a liquid or gas in large quantities, 
still it may confront leakages, ruptures and even bursts 

that not only cause transportation interruption, product 
reduction, and an arduous work of clean-up operation 
etc., but more seriously pose catastrophic health, envi-
ronment and safety accidents. As a proactive safeguard 
strategy to develop an optimized inspection and main-
tenance program, IMP for oil and gas pipeline has been 
highly emphasized by many countries in recent years. 
Based on relevant standards (API Standard 1160-2001; 
ASME B31.8S-2004) and practical experience (Liu et al. 
2011; Liu, Hu 2011), a general flow of IMP for pipeline 
system is depicted as Fig. 1. Marked with the bold print 

Fig. 1. Flow chart of IMP
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in Fig. 1, risk assessment plays a crucial role in IMP, be-
cause the results from it serve as the main basis to judi-
ciously divide resources for inspection and maintenance 
among different pipelines, segments, or assets (Kishawy, 
Gabbar 2010). 

In pipeline industry, risk analysis, commonly com-
posed by likelihood and consequence, can be carried 
out qualitatively, semi-quantitatively, and quantitatively. 
Qualitative analysis methods, also sometimes called 
scoring-type methods, have some dazzling merits like 
facile handling, low cost etc.; therefore, they have been 
widely applied in risk assessment, and among them the 
conspicuous one is the Pipeline Hazard Index Method 
putted forward by Muhlbauer (2004). However, with 
the changes in legislation in many countries requiring 
operators to use risk assessment in HCAs, new method-
ologies (Palmer-Jones et al. 2006; Bai, Y., Bai, Q. 2005; 
Willcocks, Bai 2000; DeWolf 2003) ranged from point 
scoring qualitative schemes to detailed quantified sys-
tems. Despite giving much more reliable results, the 
quantitative risk analysis with absolute probability val-
ues, unfortunately, was sometimes a daunting dilemma 
for engineers in IMP practice owing to the scarcity of 
precise data and the vagueness of the cause-effect mech-
anism. Therefore, many researches turned to use semi-
quantitatively methods, especially those taking account 
of fuzzy techniques. Two primary ways to utilize fuzzy 
techniques were:

 – the combinations of fuzzy techniques with com-
monly used risk assessment methods, such as 
fault tree analysis and analytic hierarchy process 
(Yuhua, Datao 2005; Rajani et al. 2006; Markows-
ki, Mannan 2009);

 – the hierarchical structures with a series of fuzzy 
inference processes (Singh, Markeset 2009; Dore-
mami et al. 2010; Liu, Hu 2012). 

These researches guaranteed that fuzzy techniques, 
especially FSE and FLo, were rational and available 
mathematic tools to tackle the imprecise yet important 
data and the vague accident mechanism widely existing 
in pipeline engineering. However, it was insufficient to 
reflect the mutual relationship among the non-indepen-
dent evaluation indexes by a simple weighting process 
in the FSE, while it might be hard-sledding and time-
consuming to establish many fuzzy inference processes 
by FLo in a hierarchical structure for risk assessment. 

With respect to pipeline damage, many incident 
causes have been reported. Historical data (PHMSA 
2012) illustrated that a large number of pipeline inci-
dents were caused by material/welding/equipment fail-
ure (25.7%), excavation damage (19.7%) and corrosion 
(17.9%), as shown in Fig. 2. TPD, as the term used here, 
refers to any accidental damage caused by people not 
associated with the pipeline, mainly including excava-
tion damage and other outside force damage (7.1%), but 
excluding natural force damage. Some 20 to 30% of all 
pipeline failures in most time periods were attributed to 
TPD, and it was often the top priority in pipeline pro-
tection. In this paper we chose TPD as our application 

topic. Then a detailed analysis of TPD is presented in 
Section 2.1. 

In order to keep a good balance between precision 
and practicality, this paper proposes a RB-FSE method 
for the pipeline risk assessment by a fine combination 
of FSE and FLo. The remainder of this paper is struc-
tured as follows: Section 1 briefly introduces FSE and 
FLo and then proposes the method of RB-FSE. Next, 
the RB-FSE model for TPD is established in Section 2. 
Section 3 presents the case study of a length of pipeline. 
RB-FSE model and scoring-type method are respectively 
employed in this case study, and the results from them 
are compared and discussed. Finally, conclusion is pro-
vided in last section.

1. Proposed Methodology 

1.1. Fuzzy Synthetic Evaluation 
FSE is often categorized as a special MCDM technique 
used by decision-makers to solve problems of conflict-
ing multiple criteria. FSE is employed in this paper to 
translate various independent sub-indicators to one 
single comprehensive indicator directly related to the 
failure process. 

1.2. Fuzzy Logic 
A FLo based model uses a set of if–then rules and logical 
operators to establish a relationship between the input 
variables and the outputs. As shown in Fig. 3, this kind 
of model often consists of four components: fuzzy rule 
base, fuzzy inference process, fuzzification and defuzzi-
fication. 

The rules of inference involved in the FLo model 
could be utilized for deriving truths state or proven 
truths (Ross 2010). So we could express the inherent 
failure mechanism in the form of fuzzy rules and then 
gather them as a fuzzy rule base so as to support the 
inference process. In this study, it is by the FLo that the 
comprehensive indicators representing the development 
stages of failure are synthesized to derive the final result. 

Fig. 2. Classification of the causes of incidents at pipelines  
in United States (1992–2011)
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1.3. Rule-Based Fuzzy Synthetic Evaluation Method 
Both based on the fuzzy set theory, FSE and FLo contain 
the similar procedures – fuzzification and defuzzifica-
tion, where crisp values and fuzzy sets could be trans-
formed reciprocally. And a good combination of them 
could integrate their functions and form a systematical 
assessment method to handle fuzzy information. Fol-
lowing this speculation, the RB-FSE method is proposed 
as shown in Fig. 4. The detailed description of RB-FSE 
method is given with the risk assessment model of the 
TPD in the Section 2. 

2. Risk Assessment for the Third-Party  
Damage to Pipeline System

2.1. Description of Third-Party Damage 
Combining the indicator system proposed by Muhlbau-
er (2004) and the feedback information from risk assess-
ment practice in China, the cause-effect process with the 
influence factors of TPD could be depicted by Fig. 5. It 
is apparent that three indicators – Activity Level (AL), 
Preventive Measure (PM), and Security Attribute (SA), 
directly result in the failure of pipeline. The explanations 
of them are given as follows: 

 – AL  – for an analysis of the TPD potential, the 
area of opportunity is strongly affected by the 
level of activity near the pipeline; 

 – PM – some common PMs could effectively keep 
off or slow down the possible third-party activi-
ties risking the pipeline; 

 – SA  – in order to resist the TPD, the engineers 
have designed some SAs, which cannot be eas-
ily changed during the operation of the pipeline 
system. 

AL could be regarded as the precondition of the 
TPD, while PM and SA serve to reduce the failure risk 
of pipeline. Hazardous Activity Level (HAL) could be 
drawn from a combined consideration of AL and PM, 
and then the Failure Likelihood (FL) could be estimated 
according to HAL and SA. 

As shown in Table 1, two-level indicator system is 
then established: 

 – the 1st level contains three indicators that have 
been introduced above; 

 – the 2nd level includes eight sub-indicators that 
belong to their relevant indicators. 

In the RB-FSE model, the 2nd-level indicators are 
transformed into the 1st-level indicators, and then they 
are integrated into a fuzzy inference to get the final re-
sult. 

2.2. Fuzzification of Raw Data 
It is assumed that every sub-indicator Si, j is associated 
with an underlying fuzzy set Fi, j, which is defined by n 
linguistic constants and a specific universe of discourse, 
as shown in Table 1. In this paper, n = 5, that correspond 

Fig. 3. An overview of the FLo system
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to the condition states (very low, low, medium, high, very 
high) [(vl, l, m, h, vh)] or (none, bad, medium, good, 
excellent) [(n, b, m, g, e)]. And it is specially provided 
all the linguistic variables are described as dimension-
less quantities and normalized into a number between  
[0, 1] so as to avoid unnecessary dimensional conver-
sion and calculation. Row data for a given sub-index  
Si, j, whether crisp, fuzzy or predefined interval-valued, 
are mapped (or fuzzified) into Fi, j in terms of the ex-
pertise with the universe of discourse. For example, sup-
posing among ten experts four choose medium and the 
other six choose good, the fuzzy set (0, 0, 0.4, 0.6, 0) of 
(n, b, m, g, e) is used to replace 2 times/week to represent 
patrol frequency. 

2.3. Weighting and Aggregation 
Relative degrees of influence (importance or evidential 
credibility) have to be assigned in order to aggregate 
2nd-level indicators towards 1st-level indicators. Let  
Wi, j denote the relative weight of 2nd-level indicators i 
towards 1st-level indicators j. Weight values are obtained 
through expert opinion by CCM – a method based on 
pairwise comparison judgment matrix. 

The weights of all sub-indicators within a compre-
hensive indicator are normalized to a sum of 1 prior to 
the application of the aggregation steps. The aggregation 
process is given by: 

   = … … ⋅ … …      1, , , 1, , ,   ,
j j

T

j j i j N j j i j N jI W W W F F F   (1)

where: ‘·’ represents matrix multiplication. Since Fi, j are 
5-tuple fuzzy sets and Wi, j are scalars, is in fact a 5-tuple 
fuzzy set that represents the aggregated contribution of 
indicator j towards the final result. 

2.4. Fuzzy Inference Systems 
In this work, two FISs are thereby designed respectively 
for the assessment of HAL and FL. The FISs are all con-
structed in accordance with the components of FLo in-
troduced above. We take the FIS of HAL for example. 

Firstly, these linguistic variables (AL, PM, and 
HAL) are decomposed with fuzzy variables [ AL (vl, l, 
m, h, vh); PM  (n, b, m, g, e); HAL  (vl, l, m, h, vh)]. 
And the calculation results of AL and PM form above 
steps could be inputted. 

Next, membership functions are built and adapted. 
Out of several existing approaches, a fixed center-based 
membership function approach (Zhou et al. 1997) is ad-
opted in this model, and symmetric Gaussian curves are 
used to describe fuzzy variables. The Gaussian member-
ship function depends on two parameters and is given 
by: 

( )
( )− −

⋅σσ =

2

22 , ,  ,
x c

f x c e   (2)

where: c is the mean value and is the standard devia-
tion. Membership functions are centered, each at the 
mid-value of the numeric interval associated with each 
fuzzy variable. For example, the Gaussian membership 
function for the ‘medium’ of AL is centered on the aver-
age value of the interval (0.2, 0.8) which corresponds to 
a mean value c = 0.5, as shown in Fig. 5. The standard 
deviation parameters for Gaussian functions are chosen 
such membership function curves are completed with 
the minimum and maximum points of the interval as-
sociated with each of the fuzzy variables. Based on this 
fixed center-based membership function approach, the 
membership functions for these linguistic variables are 
respectively modeled as fuzzy sets as shown in Fig. 6. 

Finally, the mapping between AL, PM and HAL is 
accomplished by the use of if–then rules, e. g., if AL is 
high, and PM is bad, then HAL is very high. For such a 
single attribute problem, a total of 13 if–then rules from 
expert knowledge are employed in this FIS to provide 
mapping between these linguistic variables, and the rule 
surface of this FIS is shown in Fig. 7. 

The FIS for the assessment of FL could be similarly 
established. The membership functions of the SA (I3) 
and the FL are modeled as shown in Fig. 8, and another 
13 if–then rules are described by the rule surface shown 
in Fig. 9. 

Table 1. Description of TPD indicators 

1st-level  
indicator (j) 2nd-level 

indicator (i, j) Linguistic constants Universe of discourse

AL 1

Population density 1, 1 (vl, l, m, h, vh) (persons per square km (p/km2) < 1, 1 ≤ p/km2 < 25, 
25 ≤ p/km2 < 100, 100 ≤ p/km2)

Construction 2, 1 (vl, l, m, h, vh) (no, few, frequent) 

Traffic 3, 1 (vl, l, m, h, vh) (no, rail or roadway traffic) 

PM 2

Right-of-way condition 1, 2 (n, b, m, g, e) (no, obstructed and not visible, partly unclear, clear  
and unencumbered ) 

Public education 2, 2 (n, b, m, g, e) (no, few, adequate, good and effective) 
Patrol 3, 2 (n, b, m, g, e) (never, monthly, weekly, daily) 
Laws and regulations 4, 2 (n, b, m, g, e) (no, not complete, complete and effective) 

SA 3
Minimum depth of cover 1, 3 (n, b, m, g, e) (depth < 0.5 m, 0.5 m ≤ depth < 1 m, 

1 m ≤ depth < 1.5 m, 1.5 m ≤ depth) 
Aboveground facilities 2, 3 (n, b, m, g, e) (no, few with protection, many) 
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2.5. Defuzzification 
The assessment results of AL, PM, SA, HAL and FL 
could all be transformed from fuzzy sets to crisp values 
through a defuzzification process. As one of the most 
computationally efficient methods, the height method is 
employed to defuzzify results from the aggregation pro-
cess, and it is given by the algebraic expression:

( )
( )

µ ⋅
=

µ
∑
∑

* ,h h

h

z z
z

z
  (3)

where: ∑ denotes the algebraic sum; zh and µ(zh) are the 
max-value and the aggregation result of each member-
ship function respectively. For example, if the aggrega-

tion result of AL  (I1) is (0, 0, 0.85, 0.15, 0) and from the 
membership function shown in Fig. 6 the hZ  is (0, 0.25, 
0.5, 0.75, 1), then the crisp result of AL is:

⋅ ⋅
= =* 0.85 0.5 0.15 0.75 0.5375.

0.85 0.15ALz +
+

After going through all these steps above, the FISs 
for FL of pipeline for TPD is preliminarily established; 
nevertheless the membership function and the if–then 
rules in this model still need to be adjusted according 
to the practical feedback. 

3. Case Study 

3.1. Case Description 
One case study cited from Wang et  al. (2008) is pre-
sented here to illustrate and discuss the application of 
the RB-FSE model in FL assessment for the TPD. As 
shown in Fig. 10, the pipeline has lengths of 21.65 km 
and burial depths of 1.5 m. It has been divided into 17 
evaluation sections in terms of the geographical envi-
ronment and the population density along the pipeline. 

Fig. 6. The membership functions for AL, PM and HAL

Fig. 7. Rule surface of FIS for the calculation of HAL

Fig. 8. The membership functions for the SA and the FL

Fig. 9. Rule surface of FIS for the assessment of FL
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Among the whole pipeline, the 3rd, 8th, 12th and 16th 
sections are equipped aboveground valves but with good 
protection. A specialized pipeline operation company is 
responsible for the maintenance of the whole pipe, so all 
the sections enjoy almost the same prevention measures 
except for the right-of-way condition in a few sections 
where the caution signs are obstructed. 

3.2. Assessment for One Pipeline Section 
The calculation process using RB-FSE model could be 
illustrated by the example of the 8th pipeline section. 
The calculation results of sub-indicators and indicators 
are shown in the Table 2. Subsequently, after inputting 
the results of indicators into the FISs of HAL and FL, 
the assessment result of HAL is 0.498 and then the FL is 
0.303. The assessment results of all 17 pipeline sections 
are procured using RB-FSE model and then represented 
in a scatter graph in Fig. 11. 

3.3. Comparison with the Scoring-type Method 
As the most common method in pipeline risk assess-
ment, the scoring-type method is used here for compari-
son. The scoring-type method often uses expert grading 
in terms of an index system to generate relative scores of 
pipeline segments along a pipe route. Here we utilize the 
index system proposed by Muhlbauer (2004). The full 
score is 100 points, and a higher score means pipeline 

suffers higher likelihood of failure. Using the same indi-
cator system and expert members, the final assessment 
results are shown in Fig. 12.

The K-means clustering method is utilized to rank 
these pipeline sections into different groups according to 
the assessment result of FL. To simplify the calculation, 
we assume the number of clusters is three and then gain 
the results of the cluster center, the cluster membership 
and the distance from assessment results to their rel-
evant cluster center. The results of cluster analysis are 
also shown in Figs 11 and 12. 

The average distance in each cluster is calculated 
and listed in the Table 3. For the purpose of facilitat-
ing comparison, the average distances from RB-FSE 
model have been multiplied by 100 so as to keep the 
same dimensions with the results from numerical scor-
ing method. 

In contrast with the numerical scoring method, 
it is apparent to find that RB-FSE model labels more 
pipeline sections with ‘medium risk’ and yet less sec-
tions with ‘low risk’ or ‘high risk’, which fits better with 
actual measurement. Moreover, in the same cluster the 
average distance from RB-FSE model is shorter than 
that from numerical scoring method. This suggests the 
results from RB-FSE model are more favorable in risk 
ranking and decision-making for their better diversity 
and stratification. 

Fig. 10. The sketch of the high pressure natural gas pipeline

Table 2. The assessment results of sub-indicators and indicators for 8th pipeline section

Sub-indicator Fuzzy-set-results
(vl, l, m, h, vh)/(n, b, m, g, e)

Weight 
value Indicator Fuzzy-set-results

(vl, l, m, h, vh)/(n, b, m, g, e)
Crisp 
result

Population density (0, 0, 1, 0, 0) 0.5
AL (0, 0, 0.85, 0.15, 0) 0.538Construction (0, 0, 0.5, 0.5, 0) 0.3

Traffic (0, 0, 1, 0, 0) 0.2
Right-of-way condition (0, 0, 0, 0, 1) 0.1

PM (0, 0.3, 0.3, 0.3, 0.1) 0.550
Public education (0, 0, 1, 0, 0) 0.3
Patrol frequency (0, 0, 0, 1,0) 0.3
Laws and regulations (0, 1, 0, 0,0) 0.3
Minimum burial depth (0, 0, 0, 0, 1) 0.65

SA (0, 0, 0.35, 0, 0.65) 0.825
Aboveground facilities (0, 0, 1, 0, 0) 0.35
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3.4. Decision-Making 
For the sake of reducing the FL of these pipeline sec-
tions with ‘high risk’, a feasible and effective method is 
to increase the patrol frequency in these areas. After the 
supplementary of special inspectors who are responsible 
for patrolling the high risk sections once a day, the reas-
sessment results of these sections, as shown in Fig. 13, 
are then decreased to the acceptable values.

Conclusions 

This paper proposed a semi-quantitative risk analysis 
method named RB-FSE, which combined fuzzy syn-
thetic evolution and FLo. Therefore, fuzzy information 
including empirical data and ambiguous mechanism 
could be rationally and effectively utilized by fuzzy 
techniques in this method. TPD, as a common incident 
cause to pipeline, is described and analyzed. This is then 
followed by the creation of RB-FSE model to analyze the 
FL of pipeline suffering TPD. Subsequently, a length of 
pipeline is respectively evaluated by the RB-FSE model 
and scoring-type method. The results from these two 
methods are compared by K-means clustering method. 
Discussion results show RB-FSE model could be more 
conducive to support risk ranking and decision-mak-
ing. Finally, the results from RB-FSE model are used to 

make a decision to eliminate ‘high risk’ pipeline sections, 
which present the application value of RB-FSE model.

The RB-FSE model could also enlarge the appli-
ance-bound of fuzzy techniques. Besides what is il-
lustrated in this paper – FL assessment of the TPD for 
pipeline, this model could be applied in other assess-
ment problems for complex system. We will continue to 
develop this model into a vigorous tool to support IMP 
in our future research. 
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2 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17 1.020 3, 6, 7, 9, 10, 13 2.667
3 8, 12, 16 0.333 8, 11, 12, 14, 15, 16, 17 1.633

Notes: 1 – low risk sections; 2 – medium risk sections; 3 – high risk sections.

Fig. 12. The assessment results from numerical  
scoring method

Fig. 13. The assessment results after increasing  
the patrol frequency
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