
A THREE-STAGE HEURISTIC FOR OPTIMIZING
CONTAINER RELOCATIONS IN MARITIME
CONTAINER TERMINALS

Qianwen ZHU1, Bo JIN2 

1 Dept of Management Sciences, City University of Hong Kong, Hong Kong, China
2 College of Management, Shenzhen University, Shenzhen, China

Highlights:
 ■ the approach takes into consideration multiple containers simultaneously when optimizing relocations in maritime container terminals;
 ■ we propose a well-designed three-stage heuristic (3SH) that examines and arranges containers in different stacks, overcoming the deficiencies of previ-
ous methods;

 ■ extensive numerical experiments demonstrate that the proposed heuristic outperforms cutting-edge heuristics;
 ■ the introduced heuristic performs particularly well on large-scale problem instances, which is crucial for practical applications.

Article History: Abstract. The Container Relocation Problem (CRP) is one of the most important optimization problems in mari-
time container terminals. The objective is to minimize the number of relocation operations for retrieving con-
tainers in a sequence. If the container to be retrieved next is not at the top of a stack, unproductive relocations
have to be carried out. Due to the large number of containers handled by busy terminals, a slight reduction in
relocation rates can result in significant savings in operating costs. Most of the existing heuristics make reloca-
tion decisions for the blocking containers one by one, based on simple indicators. In this article, we propose a
Three-Stage Heuristic (3SH) that extends the decision horizon to multiple containers to achieve a higher-quality
solution. Computational experiments are conducted on 3 sets of benchmark instances, and the results show that
the proposed heuristic outperforms the state-of-the-art heuristics documented in the research literature.

 ■ submitted
 ■ resubmitted

 ■ accepted

8 May 2023;
5 September 2023,
14 October 2023;
19 November 2023

Keywords: logistics, optimization, maritime container terminal, container relocation problem, heuristic.

 Corresponding author. E-mail: jinbo@szu.edu.cn

ISSN 1648-4142 / eISSN 1648-3480

TRANSPORT

Original Article

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Copyright © 2024 The Author(s). Published by Vilnius Gediminas Technical University

Notations

Variables:
S – number of stacks;
H – maximum height limit;
N – number of containers.

Abbreviations:
3SH – three-stage heuristic;
BRP – blocks relocation problem;
CRP – container relocation problem;

IP – integer programming;
LIFO – last-in, first-out;

NP – nondeterministic polynomial;
VRH – virtual relocation heuristic;
VRI – virtual relocation index.

1. Introduction

Economic globalization poses great challenges to the
ocean shipping industry. The efficiency of container trans-
port, which plays a key role in the maritime logistics sys-
tem, is in need of advancement and streamlining. Impor-
tantly, maritime container terminals act as the hub nodes
that connect sea and land container transport by providing
temporary storage space for container transshipment. An
efficient operation process at a terminal can reduce equip-
ment consumption, alleviate traffic congestion, and reduce
vessel turnaround time, thus increasing the competitive-
ness of the port.

A maritime container terminal is a complex system that
generally consists of 3 major functional areas, as shown in
Figure 1. The quayside is an area where vessels can berth,
the landside is an area for trucks or trains to handover

2024

Volume 39

Issue 2

Pages 146–160

https://doi.org/10.3846/transport.2024.21668

mailto:jinbo@szu.edu.cn
mailto:jinbo@szu.edu.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/transport.2024.21668

Transport, 2024, 39(2): 146–160 147

containers, and a yard is the main area where containers
are stored. In the yard, containers are piled up vertically
to form a stack, and several stacks in a row form a bay. A
block is a parallel group of consecutive bays, and the yard
consists of a set of such blocks. The operations in the yard
include unloading/loading containers from/to the yard and
pre-marshalling containers within the yard (Lehnfeld, Knust
2014). In this article, we focus on the unloading opera-
tions, i.e., retrieving containers from the yard.

Let us consider a bay consisting of S stacks indexed
from 1 to S, whose maximum height is limited to H. The
tiers in the bay are indexed from 1 to H from bottom to
top, and a specified location indexed by its stack and tier is
called a slot. There are in total N containers initially stored
in the bay, and each container is assigned a unique integer
value from 1 to N to indicate its retrieval priority. Here,
a smaller priority value indicates an earlier retrieval or-
der. The objective of the problem is to minimize the total
number of relocations needed to retrieve all containers in
the bay according to their priority values, i.e., from 1 to N.

If the containers to be retrieved earlier are all placed
on top of those to be retrieved later, then the entire re-
trieval process can be completed at ease. However, an
optimal stacking order is not always the case in reality,
because containers arrive at the terminal at random and
most of the time, terminal operators do not have enough
time to rearrange these containers after the exact retrieval
sequence is available. During the retrieval process, the tar-
get container is defined as the container to be retrieved
next, and the stack it is located in is called the source stack.

If the target container is not at the top of the source stack,
then all blocking containers placed above it have to be
relocated to other stacks 1st. A decision has to be made
for each blocking container to choose the best destination
stack to be relocated to. Since relocation operations are
valueless and time-consuming, the total number of relo-
cations needs to be minimized to raise the efficiency of
the retrieval process. This optimization problem is known
as the CRP or the BRP in the literature, which has been
proven to be NP-hard (Caserta et al. 2012).

Figure 2 presents an example depicting the 1st few
steps in solving a CRP instance. 1st, container 1 is imme-
diately removed from the bay since it is retrievable, i.e., it
is at the top of stack 3. Then, in order to make container
2 retrievable, containers 3 and 13 are relocated from stack
2 to stacks 3 and 4, respectively. It is assumed that reloca-
tions only occur to the blocking containers atop the target
container, which is a common practice in many terminals.
The relocation problem with this restriction is also known
as the restricted CRP in the literature.

In this article, we propose a method called the 3SH
to address the CRP, which extends the decision horizon
to deal with multiple blocking containers simultaneously.
Experimental results show that it outperforms the state-
of-the-art heuristics on 3 sets of benchmark instances.
The remainder of this article is organized as follows. Sec-
tion 1 – introduction. Section 2 reviews related works in
the literature. Sections 3 describes the proposed method,
and Section 4 presents the experimental results. Lastly,
Section 5 concludes the article.

Figure 1. Structure of a maritime container terminal

Figure 2. Example of retrieval and relocation operations

Q. Zhu, B. Jin. A three-stage heuristic for optimizing container relocations in maritime container terminals148

2. Literature review

As shown in Figure 1, there are 3 types of container han-
dling processes in a container yard. There is the loading
process in which incoming containers delivered by ves-
sels/trucks need to be stored in a designated space, the
pre-marshalling process in which the containers already
stacked in the yard need to be rearranged to reduce the
overall retrieval time in the upcoming unloading process,
and the unloading process in which some containers in the
yard need to be retrieved in a predetermined sequence for
further transportation. Lehnfeld & Knust (2014) and Carlo
et al. (2014) provided comprehensive surveys on existing
yard optimization problems based on this classification
scheme. The container stacking problem (e.g., Kim et al.
2000) occurs in the loading process to determine the lo-
cations for stacking incoming containers so as to mini-
mize the total number of future relocations. For the same
purpose, the container pre-marshalling problem (e.g., Lee,
Hsu 2007) is raised in the pre-marshalling process. Finally,
the CRP arises in the unloading process.

To the best of our knowledge, Kim & Hong (2006) was
the 1st to study the CRP. They formally introduced the
problem in the form of the restricted version, and they
also proposed a rule-based heuristic and a branch-and-
bound algorithm to solve it. Caserta et al. (2012) and Zhu
et al. (2012) were the 1st to extend the CRP to the unre-
stricted version. A survey of optimization methods for the
CRP can be found in Lersteau & Shen (2022). Caserta et al.
(2012) presented integer linear programming formulations
for both the restricted and unrestricted versions, and also
designed a simple rule of thumb to solve the problem. Zhu
et al. (2012) investigated the application of the iterative A*
algorithm in solving both versions of the CRP. Since then,
a number of studies have been proposed to tackle the
restricted version (Jovanovic, Voß, 2014; Ting, Wu 2017;
Quispe et al. 2018; Bacci et al. 2019, 2020; Zhang et al.
2020) or the unrestricted version (Petering, Hussein 2013;
Jin et al. 2015; Tricoire et al. 2018; Feillet et al. 2019; Jin,
Tanaka 2023), and some scholars studied both versions
at the same time (Jovanovic et al., 2019). This article is
focused on the restricted version.

There have been several IP models proposed for the
restricted CRP in the literature. Caserta et al. (2012) gave
an IP formulation named BRP-II, which was later corrected
by Zehendner et al. (2015). Galle et al. (2018) presented
a new integer program called CRP-I, which uses a smart
pairwise encoding to describe the relative positions of the
containers. Bacci et al. (2020) proposed a new IP formu-
lation as well as a branch-and-cut algorithm. Recently,
Tanaka & Voß (2022) proposed a novel IP model based
on truncated relocation sequences. This model is solved
repeatedly with an iteratively expanding set of truncated
relocation sequences, until an optimal solution is found.
Another branch of exact approaches to the restricted CRP
includes branch-and-bound search (Kim, Hong 2006; Ex-
pósito-Izquierdo et al. 2014, 2015; Ku, Arthanari 2016) and
iterative deepening search (Zhu et al. 2012; Tanaka, Takii
2016; Quispe et al. 2018).

Despite the fact that the above exact approaches are
guaranteed to obtain optimal solutions, the computation
time required increases dramatically as the instance size
increases. Even the most efficient exact algorithm (Tan-
aka, Voß 2022) requires hours to solve an instance with
10 stacks and 10 tiers. As a result, a substantial amount
of research has been dedicated to the design of heuris-
tic approaches that can yield high-quality solutions in a
relatively short computation time. The existing heuristic
approaches can be broadly classified into rule-based heu-
ristics and meta-heuristics depending on the complexity of
the algorithmic design. Rule-based heuristics are greedy
algorithms that repeatedly determine and perform the
next relocation until the bay becomes empty. The exist-
ing rule-based heuristics for the restricted CRP include
the heuristic based on the expected number of additional
relocations (Kim, Hong 2006), the reshuffle index heuristic
(Murty et al. 2005), the Min–Max heuristic (Caserta et al.
2012), the PR4 heuristic (Zhu et al. 2012), the chain heu-
ristic (Jovanovic, Voß 2014), the Greedy1 heuristic (Ünlüy-
urt, Aydın 2012), the group assignment heuristic (Wu, Ting
2012), the VRH (Ting, Wu 2017), and the machine learning-
driven upper bound method (Zhang et al. 2020). The exist-
ing meta-heuristics include beam search (Ting, Wu 2017;
Zhang et al. 2020) and its bounded version (Bacci et al.
2019), corridor method (Caserta et al. 2011), ant colony
algorithm (Jovanovic et al. 2019), and genetic algorithm
(Maglić et al. 2020).

In this article, we are concerned with rule-based heu-
ristics. Murty et al. (2005) designed the reshuffle index
heuristic, which moves the blocking container to the stack
where it will block the least number of containers. It ac-
counts for all containers causing additional relocations,
without giving special attention to the container with the
smallest priority value. This poses a major shortcoming
because other containers are likely to be moved anyway
when retrieving the container with the smallest prior-
ity value, making their inclusion irrelevant. The Min–Max
heuristic by Caserta et al. (2012) corrected this by focusing
on the container with the smallest priority value in each
stack. It 1st aims to place the blocking container in a stack
that will not cause further relocations. 2nd aims to choose
a stack whose smallest priority value closely matches the
priority of the blocking container. The PR4 heuristic by
Zhu et al. (2012) modified the Min–Max heuristic by intri-
cately handling a special case. When moving the blocking
container to any other stack inevitably causes additional
relocations, the Min–Max heuristic chooses the stack with
the largest priority value. If the stack selected by the Min–
Max heuristic has only one available slot, the PR4 heuris-
tic instead chooses the stack with the 2nd-largest priority
value. The aforementioned heuristics make relocation de-
cisions for just one blocking container at a time. However,
a more comprehensive approach that considers multiple
containers simultaneously has the potential to yield bet-
ter solutions. This line of research is exemplified by the
chain heuristic (Jovanovic, Voß 2014) and the VRH (Ting,
Wu 2017), and is further extended in our study.

Transport, 2024, 39(2): 146–160 149

3. 3SH

3.1. Motivation of the proposed method

A heuristic for the restricted CRP describes a rule that de-
cides the destination stacks for the blocking containers
placed above the target container. Most existing heuris-
tics make relocation decisions for these containers, one
by one, from top to bottom; these individual decisions do
not consider the overall impact of each decision. Generally
speaking, it is beneficial to take multiple containers into
account and make a more thoughtful decision by evaluat-
ing the overall cost of relocating them. 2 existing heuristics
in the literature have adopted this idea. One is the chain
heuristic proposed by Jovanovic & Voß (2014). When de-
ciding the destination stack for the current container to be
relocated, the chain heuristic checks whether it is better to
reserve a potential stack for relocation of the subsequent
container. The major limitation of the chain heuristic is that
it considers only 2 containers in a row. The other heuristic
considering multiple containers is the VRH proposed by
Ting & Wu (2017), which extends the decision horizon to
all blocking containers above the target container. How-
ever, VRH deteriorates in the case where there is only one
container in the decision horizon.

In this section, we introduce a new heuristic called 3SH,
which combines the advantages of the 2 above-mentioned
heuristics while alleviating their disadvantages. Similar to
VRH, 3SH determines the destination stacks for all block-
ing containers above the target container simultaneously.
As the name implies, all the decisions will be completed
in 3 stages. The 1st 2 stages are derived from VRH with
effective enhancements. In the 1st stage, containers that
do not cause additional relocations are assigned to suit-
able destination stacks 1st, while the rest will be assigned
in the 2nd stage. Finally, in the last stage, the complete
assignment identified in the previous stages is adjusted
to further improve the solution. Figure 3 provides an over-
view of the steps completed at each stage.

3.2. 1st stage: compute a partial assignment

Relocating a container onto a stack whose priority is high-
er than the relocated container results in an additional re-

location, since the relocated container has to be relocated
again. Here, the priority of a stack is defined by the small-
est priority value among all the containers in it; if the stack
is empty, its priority value is set to N +1. The goal of the
1st stage is to assign as many blocking containers as pos-
sible without causing any additional relocations.

Let us start by recalling the 1st phase of VRH. In the
1st phase of VRH, the blocking containers are processed
in descending order of their priority values, which we call
the priority order. For each container c, if there exists at
least one stack such that: (1) it differs from the source
stack, (2) it is not fully occupied, (3) its priority value is
larger than c, and (4) putting c onto the top of this stack
will not violate the LIFO constraint, then container c is vir-
tually moved to the stack with the smallest priority value;
otherwise, container c remains unassigned. Conditions (1)
and (2) are necessary for a feasible relocation, condition (3)
ensures that container c would be non-blocking after the
relocation, and condition (4) is mandatory to prevent from
violating the natural relocation order.

However, such a priority order is not always better
than the natural order from top to bottom. Based on the
priority order, after container c chooses its destination
stack, this chosen stack will be excluded for all contain-
ers placed above c due to the LIFO constraint. Obviously,
this exclusion may make the priority order worse than the
natural order. Figure 4 demonstrates an example, in which
containers 11, 8, and 15 are the blocking containers from
top to bottom, and there is only one empty stack with a
sufficiently large priority value of 16. The circled numbers
next to the containers represent the respective decision
sequence in each order. In the priority order, only con-
tainer 15 can be relocated to this stack without causing
additional relocations, while in the natural order, contain-
ers 11 and 8 can be relocated to this stack without causing
additional relocations.

To generate a better partial assignment in the 1st
stage, we examine both the priority order and the natural
order and choose the one that assigns more containers
without causing additional relocations. Note that in the
natural order, the LIFO constraint is automatically satisfied,
so we do not need to check it during the decision process.

Figure 3. Flowchart of the 3SH

Q. Zhu, B. Jin. A three-stage heuristic for optimizing container relocations in maritime container terminals150

3.3. 2nd stage: complete the assignment

The 1st stage obtains a partial assignment for the con-
tainers that can be relocated without causing any addi-
tional relocations. For the sake of simplicity, we consider
these containers to have been virtually moved onto the
designated destination stack. The task of the 2nd stage
is to assign the remaining containers after the 1st stage,
which will cause additional relocations. Due to the LIFO
constraint, these containers may have to be inserted into
a middle position between those that have been virtu-
ally relocated. For each blocking container c considered in
the 2nd stage, the specific position to be inserted to each
candidate stack s is unique due to the LIFO constraint. In
this way, the containers in stack s, including the original
containers placed in it and those having been virtually re-
located to it, can be divided into 2 parts. Let U denote
the number of upper containers whose priority values are
larger than c, and let u and l denote the smallest priority
values within the upper and lower-parts, respectively. The
VRH processes the remaining containers in ascending or-
der of priority values, and for each containerc, it calculates
the so-called VRI for each candidate stack s as follows:

()min , , iforiginal ;VRI
otherw, e

1
is ,

l c c u U
Nc u

 − −=

≤

− −

where: the differences between container c and the lower
and upper-parts, i.e., l – c and c – u, are referred to as the
lower-part difference and upper-part difference, respec-
tively. If no more than one additional relocation exists (i.e.,

1U ≤), both the lower-part and upper-part differences are
considered. Otherwise, only the upper-part difference is
considered with a penalty of –N added to reduce the
weight of the candidate stack. Finally, the stack with the
largest VRI is selected as the destination stack for relocat-
ing container c.

In the proposed 3SH, we enhance the VRI by dividing
the 1st case into 3 finer cases as follows:

()
()

, if 0 1;
2 , if and 1;

enhanced VRI
min , ,

and
0
1;

,
if
otherwise,

l c U E
l c N E

l
U

c c u
u

U
c N

 − = >

− − − ==
− − =

=

− −

where: E represents the number of empty slots in the con-
sidered candidate stack s. The situations of U = 1 and U >
1 are the same as that in VRH, while for U = 0, we in ad-

dition consider 2 cases depending on E. Note that U = 0
implies that either the upper-part is empty or all the up-
per containers have smaller priority values than c. If the
considered candidate stack s has more than one empty
slot (i.e., E > 1), we only consider the lower-part differ-
ence. Otherwise, we consider the opposite of the lower-
part difference with a penalty of –2N added to reduce the
weight of the candidate stack. The purpose of using the
opposite of the lower-part difference in the case of E = 1
is to prevent wasting potential candidate stacks with large
priority values.

Figure 5 shows an example demonstrating how the
enhanced VRI can improve the decision. With the original
VRI, container 15 chooses stack 4 as its destination stack,
making stack 4 fully occupied. Subsequently, after contain-
er 5 is retrieved, container 6 becomes the target container,
and container 9 inevitably causes an additional relocation.
However, in the proposed 3SH, container 15 chooses stack
2 as its destination stack according to the enhanced VRI,
because the scores for stacks 2, 3, and 4 are −7, −9, and
−25, respectively. Thus, stack 4 will be reserved to better
accommodate other blocking containers. Specifically in the
example shown, container 9 will be relocated to the last
empty slot of stack 4, with no additional relocation caused.

3.4. Last stage: adjust the last relocation

After the previous 2 stages, all blocking containers above
the target container have been assigned to the proper des-
tination stacks. The last stage attempts to further improve
the obtained arrangement. We denote the bottommost
blocking container above the current target container as c
and the topmost blocking container above the next target
container as d. After all the containers above container c
have been relocated to their designated destination stacks,
we check whether it would be better for container c to
give up its destination stack s to container d.

2 situations will be compared in a similar way to that
in research by Jovanovic & Voß (2014). In the 1st situation,
container c will be relocated to stack s as planned, and the
score D1 is computed as the priority of stack s minus c.
After that, container d chooses its destination stack using
the Min–Max rule (Caserta et al. 2012), and the score D2
is equal to the priority of the chosen stack minus d. In the
2nd situation, container c re-selects its destination stack
using the Min–Max rule with the exclusion of stack s, and
the score R1 is computed as the chosen stack minus c.
With regard to container d, the score R2 is computed as
the priority of stack s minus d. The 2nd situation is consid-
ered to be a better choice if the following conditions are
satisfied: (1) D1 > R2 > 0 and (2) D2R1 > 0. The 1st condi-
tion implies that both containers c and d will not cause
additional relocations if they are relocated to stack s, and
that the difference of priority between stack s and con-
tainer c is larger than that of d. The 2nd condition implies
that the relocations specified by D2 and R1 both cause
additional relocations, or neither of them cause additional
relocations.

Figure 4. Example for comparing the priority order and the
natural order in the 1st stage

Transport, 2024, 39(2): 146–160 151

Figure 6 demonstrates an example in which the last
stage reduces one relocation. The last blocking container
to be relocated for retrieving container 5 is container 11.
The last stage decides that stack 3 should be reserved
for container 13, which is the topmost blocking container
above the next target container 6. Although by making
container 11 cause an additional relocation, it prevents
container 13 from causing any additional relocation and
yields a better place for receiving the other blocking con-
tainers that follow.

3.5. Merge consecutive decision horizons

Roughly speaking, the decision horizon of the proposed
3SH is the set of all blocking containers above the current
target container. However, in some special cases, consecu-

tive decision horizons could be merged to further improve
the solution quality. Specifically, if the next target contain-
er c + 1 is at a lower tier in the same stack of the current
target container c, we can simply omit the current target
container c from the bay and make more comprehensive
decisions for the merged set of blocking containers above
container c + 1.

4. Computational experiments

4.1. Experimental settings

To evaluate the performance of the proposed 3SH, 3 sets
of instances, which are generated by Wu & Ting (2010),
Caserta et al. (2011), and Zhu et al. (2012), are tested in
the experiments. 5 existing heuristic approaches in the lit-

Figure 5. Example for comparing the original VRI and the enhanced VRI in the 2nd stage

Figure 6. Illustration for the effect of the last stage

Q. Zhu, B. Jin. A three-stage heuristic for optimizing container relocations in maritime container terminals152

erature are used for comparison, namely, (1) Min–Max by
Caserta et al. (2012), (2) PR4 by Zhu et al. (2012), (3) Chain
and (4) ChainF by Jovanovic & Voß (2014), and (5) VRH by
Ting & Wu (2017). Among them, ChainF and VRH are the
most promising ones, which have been used as an impor-
tant component in the meta-heuristic approaches by Bacci
et al. (2019) and Zhang et al. (2020), respectively.

All heuristic algorithms are programmed in Java and
run on a desktop computer with an Intel Core i5 1.4 GHz
CPU and 16 GB of RAM. The exact algorithm for calculat-
ing the optimal values for the instances from Wu & Ting
(2010) is programmed in C and run on the same computer
under a time limit of one minute for each instance. The
source code of the exact algorithm is available online on
https://github.com/jinboszu/rcrp-idbb/. Optimal values and
computation times for the instances from Caserta et al.
(2011) and Zhu et al. (2012) are directly obtained from
Tanaka & Voß (2022). Their experiments were conducted
on a desktop computer equipped with an Intel Core i9-
9900K 3.6 GHz CPU and 64 GB of RAM under a time limit
of one hour for each instance.

For each test dataset, we present a table containing
the detailed results of all 6 compared heuristics and the
optimal values of the exact algorithm, accompanied by an-
other table containing the computation times of all com-
pared heuristics and the exact algorithm. The instances in
each dataset are grouped by the maximum height H and
the number of stacks S. For each heuristic, the average
number of relocations and the average computation time
in milliseconds for each group of instances are reported.
A value in bold indicates that the corresponding heuristic
provides the best result for the corresponding group of
instances. Lastly, we conduct an ablation study of 3SH to
further assess the effect of the enhancements introduced
in Section 3.

4.2. Results for the instances
from Wu & Ting (2010)

The 1st experiment is carried out on the instances gen-
erated by Wu & Ting (2010). This dataset is divided
into 48 groups, where each group is characterized by
the maximum height { }83, ,H∈ … and the number of
stacks { }... 103, ,S ∈

 
, and the number of containers N in

each group is defined by ()1 1N S H= − ⋅ + . There are 40
instances in each group, and hence the total number of
instances in the dataset is 1920. Table 1 shows the compu-
tational results of all 6 of the above-mentioned heuristics
and the optimal values. The comparison indicates that the
proposed 3SH performs the best among all the compared
heuristics, winning 35 out of a total of 48 groups. Addi-
tionally, 3SH also performs the best in terms of average
performance, with an optimal gap of 7.29%. The reason is
that our method utilizes more future blocking container
information than the other heuristics to help optimize the
relocations. Granted that the enhancements of 3SH do not
always improve the solution quality compared to VRH, we
find that the groups on which 3SH does not provide the

best results are mostly small-scale, and that the advantage
of 3SH over the other heuristics becomes more significant
as the instance size increases. Table 2 presents the com-
putation times of all 6 compared heuristics and the exact
algorithm. Among the heuristics, 3SH takes shorter aver-
age time compared to VRH. The exact algorithm performs
faster than the heuristics for small-scale instances where
H < 5 or S < 5, but is significantly slower for large-scale
instances.

4.3. Results for the instances
from Caserta et al. (2011)
Next, we assess the performance of 3SH on the instances
provided by Caserta et al. (2011). This dataset includes 21
groups of instances, where each group consists of 40 ran-
domly generated instances of the same instance size. In
the original dataset, all stacks in each instance have the
same initial height K, but the maximum height H is not
given. A widely accepted practice is to add 2 empty tiers
above the containers in each instance, i.e., H = K + 2. Ta-
ble 3 summarizes the computational results of all 6 com-
pared heuristics and provides the optimal values. Similar
to the results in the previous experiment, 3SH takes a lead
over the other heuristics by winning 15 out of a total of 21
groups. Also, 3SH achieves the best average results with
an optimal gap of 10.67%. It is also interesting to observe
from the comparison that the heuristics based on simpler
rules (i.e., Min–Max, PR4, Chain, and ChainF) turn out to
perform better on smaller instances, for example, those
with K = 3. Table 4 lists the computation times of all 6
compared heuristics and the exact algorithm. Similar to
the results in the above experiment, in terms of average
computation time, PR4 executes the fastest and 3SH runs
faster than VRH, and the exact algorithm takes much more
time in large-scale scenarios.

4.4. Results for the instances
from Zhu et al. (2012)
The instances from Zhu et al. (2012) are characterized by
3 parameters: the maximum height { }73, ...,H∈ , the num-
ber of stacks 0}{6, 1,S ∈ … , and the number of containers

{ }1, ...,N HSH H S∈ − − . There are in total 125 combinations
of (H, S, N), and 100 instances are randomly generated
for each combination. This dataset represents the situa-
tion where the bay is relatively fully occupied, which in-
creases the problem-solving difficulties. Table 5 shows the
computational results of the 6 compared heuristics and
the optimal results for the instances grouped by H and
S. The proposed 3SH outperforms the other competitors
remarkably, winning 23 out of a total of 25 groups. The
best results for the rest 2 groups are given by VRH, while
3SH comes in 2nd only by a small margin. 3SH has the
best average performance among all methods with an op-
timal gap of 6.48%. We deduce the reason for the superior
performance of VRH and 3SH as follows. The density of in-
stances in this experiment is considerably higher than that
in the previous 2 experiments, so it is more likely to have
more blocking containers during the retrieval process.

https://github.com/jinboszu/rcrp-idbb/

Transport, 2024, 39(2): 146–160 153

Table 1. Computational results for the instances from Wu & Ting (2010)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
3 3 7 40 3.43 3.38 3.42 3.38 3.37 3.35 3.30
3 4 10 40 4.95 4.88 4.95 4.95 4.87 4.90 4.85
3 5 13 40 5.75 5.78 5.75 5.80 5.75 5.78 5.75
3 6 16 40 7.73 7.70 7.72 7.85 7.70 7.70 7.65
3 7 19 40 9.03 9.00 9.05 9.17 9.02 9.03 8.95
3 8 22 40 9.88 9.75 9.87 9.75 9.72 9.73 9.73
3 9 25 40 11.63 11.58 11.60 11.57 11.55 11.55 11.45
3 10 28 40 12.03 11.93 12.02 11.97 11.95 11.93 11.88
4 3 9 40 5.83 5.73 5.82 5.95 5.70 5.73 5.68
4 4 13 40 8.75 8.55 8.72 8.57 8.52 8.55 8.43
4 5 17 40 11.40 11.43 11.35 11.40 11.30 11.43 10.98
4 6 21 40 12.68 12.55 12.55 12.60 12.50 12.38 12.03
4 7 25 40 16.35 16.03 16.45 16.07 15.97 15.98 15.48
4 8 29 40 18.73 18.58 18.52 18.52 18.30 18.30 17.95
4 9 33 40 19.85 19.83 19.72 19.87 19.60 19.53 19.15
4 10 37 40 23.60 23.23 23.32 23.25 23.20 23.08 22.35
5 3 11 40 9.10 8.48 9.10 8.70 8.50 8.53 8.40
5 4 16 40 13.13 12.70 13.02 13.17 12.60 12.63 12.25
5 5 21 40 17.08 16.45 16.95 16.65 16.20 16.13 15.58
5 6 26 40 20.60 20.50 20.42 20.52 20.22 20.05 19.33
5 7 31 40 23.15 23.05 22.92 22.70 22.60 22.45 21.35
5 8 36 40 27.68 27.05 27.37 26.82 26.67 26.43 25.40
5 9 41 40 31.00 30.60 30.35 30.55 29.70 29.65 28.65
5 10 46 40 34.50 33.83 33.80 33.45 33.35 33.05 31.70
6 3 13 40 12.98 12.33 12.77 12.30 12.20 12.18 11.50
6 4 19 40 17.15 16.88 17.05 16.92 16.52 16.55 15.63
6 5 25 40 23.93 23.33 23.52 23.57 22.55 22.35 21.05
6 6 31 40 29.03 28.63 28.77 28.57 28.22 27.78 25.98
6 7 37 40 34.40 33.65 34.07 34.07 33.15 32.68 30.75
6 8 43 40 40.48 39.60 39.65 38.90 38.97 38.50 35.68
6 9 49 40 44.90 44.20 44.50 43.30 42.57 42.45 39.68
6 10 55 40 48.80 48.35 47.77 47.45 46.95 46.10 43.60
7 3 15 40 16.63 16.43 16.25 16.40 16.27 16.00 15.03
7 4 22 40 26.38 25.60 25.97 25.62 25.17 24.40 22.60
7 5 29 40 31.93 31.35 31.15 31.42 30.42 30.33 27.53
7 6 36 40 40.43 39.43 39.22 38.65 38.20 37.78 34.40
7 7 43 40 45.63 44.03 44.92 44.27 43.35 43.15 38.95
7 8 50 40 52.10 51.73 51.15 50.82 49.00 48.50 44.48
7 9 57 40 59.88 58.95 57.92 57.35 56.00 56.03 50.80
7 10 64 40 65.73 64.98 64.37 63.60 62.55 61.35 56.58
8 3 17 40 22.03 21.60 21.52 21.20 20.57 20.35 18.63
8 4 25 40 33.68 31.90 33.05 32.82 30.95 30.98 27.70
8 5 33 40 43.08 42.10 42.57 42.00 39.52 38.58 35.80
8 6 41 40 52.20 51.18 50.87 50.25 48.67 47.88 42.18
8 7 49 40 59.03 58.48 57.97 56.32 54.40 54.35 48.83
8 8 57 40 66.38 65.48 65.12 64.55 62.85 61.95 55.78
8 9 65 40 76.33 74.83 75.05 73.50 71.92 70.75 65.60
8 10 73 40 83.90 82.58 82.02 79.35 78.30 77.15 70.28

Summary 1920 28.85 28.33 28.37 28.05 27.46 27.21 25.36

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.

Q. Zhu, B. Jin. A three-stage heuristic for optimizing container relocations in maritime container terminals154

Table 2. Computation times for the instances from Wu & Ting (2010)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
3 3 7 40 0.43 0.33 0.53 0.42 0.84 0.60 0.02
3 4 10 40 0.25 0.21 0.31 0.37 0.46 0.41 0.02
3 5 13 40 0.23 0.25 0.35 0.31 0.45 0.28 0.02
3 6 16 40 0.33 0.29 0.55 0.47 0.34 0.50 0.03
3 7 19 40 0.29 0.22 0.25 0.25 0.40 0.25 0.03
3 8 22 40 0.21 0.18 0.27 0.25 0.45 0.26 0.03
3 9 25 40 0.18 0.19 0.23 0.31 0.33 0.25 0.05
3 10 28 40 0.25 0.17 0.34 0.20 0.41 0.27 0.06
4 3 9 40 0.21 0.16 0.16 0.18 0.22 0.28 0.02
4 4 13 40 0.15 0.14 0.19 0.17 0.54 0.30 0.03
4 5 17 40 0.16 0.13 0.18 0.22 0.42 0.19 0.05
4 6 21 40 0.19 0.16 0.29 0.20 0.34 0.20 0.06
4 7 25 40 0.17 0.15 0.17 0.22 0.30 0.30 0.13
4 8 29 40 0.17 0.14 0.19 0.30 0.46 0.34 0.14
4 9 33 40 0.16 0.17 0.17 0.27 0.32 0.23 0.38
4 10 37 40 0.20 0.16 0.14 0.24 0.43 0.24 0.27
5 3 11 40 0.10 0.13 0.14 0.11 0.21 0.24 0.03
5 4 16 40 0.11 0.16 0.17 0.12 0.29 0.29 0.05
5 5 21 40 0.11 0.21 0.27 0.12 0.39 0.21 0.13
5 6 26 40 0.16 0.11 0.22 0.15 0.38 0.24 0.32
5 7 31 40 0.17 0.10 0.21 0.16 0.36 0.22 0.49
5 8 36 40 0.19 0.09 0.13 0.17 0.34 0.24 1.97
5 9 41 40 0.20 0.12 0.14 0.16 0.25 0.23 12.91
5 10 46 40 0.21 0.14 0.15 0.18 0.27 0.26 342.38
6 3 13 40 0.10 0.10 0.12 0.16 0.13 0.16 0.05
6 4 19 40 0.12 0.11 0.11 0.20 0.16 0.23 0.10
6 5 25 40 0.11 0.13 0.13 0.13 0.15 0.17 0.80
6 6 31 40 0.12 0.20 0.17 0.12 0.16 0.26 4.38
6 7 37 40 0.14 0.18 0.16 0.16 0.16 0.37 19.95
6 8 43 40 0.16 0.19 0.16 0.18 0.16 0.34 150.68
6 9 49 40 0.14 0.12 0.17 0.19 0.17 0.35 4765.07
6 10 55 40 0.15 0.13 0.18 0.21 0.24 0.36 5618.77
7 3 15 40 0.13 0.09 0.18 0.11 0.16 0.14 0.10
7 4 22 40 0.18 0.13 0.21 0.13 0.30 0.17 0.64
7 5 29 40 0.19 0.11 0.22 0.14 0.30 0.18 9.63
7 6 36 40 0.25 0.14 0.19 0.20 0.13 0.22 359.50
7 7 43 40 0.25 0.14 0.14 0.40 0.30 0.21 1401.14
7 8 50 40 0.29 0.15 0.15 0.36 0.25 0.23 4250.03
7 9 57 40 0.36 0.14 0.16 0.17 0.23 0.38 17242.84
7 10 64 40 0.15 0.34 0.20 0.19 0.27 0.54 32143.32
8 3 17 40 0.09 0.11 0.10 0.59 0.13 0.17 0.21
8 4 25 40 0.12 0.10 0.12 0.30 0.15 0.26 3.08
8 5 33 40 0.13 0.10 0.13 0.21 0.18 0.34 501.56
8 6 41 40 0.13 0.11 0.14 0.21 0.20 0.57 3826.94
8 7 49 40 0.14 0.15 0.14 0.23 0.20 0.47 21664.32
8 8 57 40 0.13 0.15 0.16 0.26 0.27 0.41 32384.26
8 9 65 40 0.18 0.13 0.16 0.24 0.23 0.31 53675.46
8 10 73 40 0.16 0.18 0.18 0.43 0.39 0.29 52462.15

Summary 1920 0.18 0.16 0.20 0.23 0.30 0.29 4809.26

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.

Transport, 2024, 39(2): 146–160 155

Table 3. Computational results for the instances from Caserta et al. (2011)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
5 3 9 40 5.08 5.08 5.08 5.15 5.15 5.13 5.00
5 4 12 40 6.30 6.30 6.35 6.33 6.35 6.35 6.18
5 5 15 40 7.05 7.05 7.05 7.08 7.05 7.05 7.03
5 6 18 40 8.45 8.45 8.43 8.45 8.48 8.45 8.40
5 7 21 40 9.33 9.33 9.30 9.30 9.33 9.33 9.28
5 8 24 40 10.73 10.73 10.68 10.68 10.73 10.68 10.65
6 4 16 40 10.98 10.93 10.80 10.93 10.80 10.73 10.20
6 5 20 40 13.55 13.63 13.45 13.63 13.45 13.40 12.95
6 6 24 40 14.68 14.60 14.63 14.58 14.60 14.35 14.03
6 7 28 40 16.90 16.80 16.88 16.73 16.80 16.58 16.13
7 4 20 40 16.75 16.75 16.40 16.65 16.30 16.30 15.43
7 5 25 40 21.23 20.98 20.55 20.38 20.50 20.23 18.85
7 6 30 40 24.25 24.05 23.93 23.98 23.75 23.80 22.08
7 7 35 40 26.33 26.35 25.88 25.90 25.80 25.70 24.25
7 8 40 40 29.60 29.60 29.05 28.80 28.98 28.60 27.70
7 9 45 40 32.35 32.35 32.15 31.98 32.18 31.83 30.45
7 10 50 40 35.50 35.30 35.08 34.58 34.75 34.70 33.28
8 6 36 40 35.90 35.80 34.98 34.60 34.25 34.00 30.88
8 10 60 40 49.85 49.63 49.20 48.98 48.88 48.60 45.50

12 6 60 40 101.25 100.35 97.13 94.70 91.38 90.73 74.38
12 10 100 40 139.28 138.60 136.18 132.20 127.78 127.10 104.75

Summary 840 29.30 29.17 28.72 28.36 27.96 27.79 25.11

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.

Table 4. Computation times for the instances from Caserta et al. (2011)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
5 3 9 40 0.25 0.29 0.25 0.26 0.30 0.32 <10
5 4 12 40 0.14 0.14 0.25 0.16 0.21 0.25 <10
5 5 15 40 0.16 0.15 0.32 0.17 0.21 0.22 <10
5 6 18 40 0.15 0.13 0.15 0.24 0.16 0.17 <10
5 7 21 40 0.12 0.12 0.14 0.15 0.13 0.16 <10
5 8 24 40 0.12 0.11 0.18 0.13 0.22 0.15 <10
6 4 16 40 0.09 0.12 0.13 0.15 0.17 0.11 <10
6 5 20 40 0.14 0.15 0.15 0.12 0.21 0.13 <10
6 6 24 40 0.16 0.14 0.16 0.12 0.13 0.13 <10
6 7 28 40 0.13 0.12 0.12 0.11 0.13 0.16 <10
7 4 20 40 0.13 0.13 0.09 0.10 0.14 0.22 10
7 5 25 40 0.08 0.09 0.10 0.10 0.16 0.13 20
7 6 30 40 0.11 0.11 0.11 0.15 0.15 0.15 20
7 7 35 40 0.14 0.09 0.11 0.19 0.15 0.21 20
7 8 40 40 0.13 0.10 0.13 0.14 0.13 0.21 40
7 9 45 40 0.14 0.12 0.13 0.11 0.33 0.20 40
7 10 50 40 0.13 0.08 0.10 0.12 0.42 0.25 100
8 6 36 40 0.13 0.08 0.11 0.11 0.41 0.25 270
8 10 60 40 0.14 0.10 0.28 0.10 0.37 0.21 870

12 6 60 40 0.27 0.28 0.31 0.40 0.44 0.35 1214430
12 10 100 40 0.18 0.18 0.28 0.23 0.78 0.73 1519130

Summary 840 0.14 0.13 0.17 0.16 0.25 0.22 130236

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.

Q. Zhu, B. Jin. A three-stage heuristic for optimizing container relocations in maritime container terminals156

Because VRH and 3SH make more comprehensive deci-
sions for all blocking containers above the target con-
tainer at a time, they are able to perform better in this
experiment. Table 6 provides the computation times of all
6 compared heuristics and the exact algorithm, showing
that 3SH outperforms both VRH and Chain in terms of
average computation time. Similarly, the exact algorithm
consumes significantly more time when dealing with large-
scale groups.

4.5. Comparative analysis

An analysis is conducted to compare the solution quality
and computation times of 3SH with other methods across
3 datasets. In Table 7, “Solution Improvement” represents
the improvement percentage in solution quality achieved
by 3SH over the other compared algorithms. It is cal-
culated as the difference of the result of the compared
algorithm and the result of 3SH over the result of 3SH.
“Time Increase” signifies the percentage increase in com-
putational time when using 3SH compared to the other al-
gorithms. This is the result of the difference of the time of
3SH and the time of the compared algorithm over the time
of 3SH. Based on the average results from the table, 3SH

is able to obtain better solutions than VRH in a shorter
amount of time over all 3 datasets. Besides, on average,
all the heuristics are capable of solving an instance within
one millisecond, which is an exceptionally short amount of
time that can be negligible in most cases.

To delve deeper into the relationship between VRH and
3SH, we categorize all instances from the 3 datasets based
on H, S, and N. The computational results and times are
plotted using bubbles in Figure 7a and 7b, respectively.
The size of each bubble represents the relative magnitude
of the value, with larger bubbles indicating larger values.
For each combination of H, S, and N, only the smaller
value of VRH and 3SH is plotted; red bubbles signify val-
ues from VRH, while blue bubbles indicate values from
3SH. We examine the proportion, location, and size of
red and blue bubbles. From the perspective of solution
quality, 3SH wins the majority of instances, with the los-
ing (red) bubbles mainly concentrated in the lower left
corner, which are of small size. However, in terms of com-
putation time, 3SH wins just over half of the instances,
but the winning (blue) bubbles are often larger in size.
This experimentally demonstrates again why, on average,
3SH outperforms VRH in both effectiveness and efficiency.
Subsequently, we try to elucidate this methodologically.

Table 5. Computational results for the instances from Zhu et al. (2012)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
3 6 15–17 300 6.71 6.68 6.71 6.72 6.67 6.67 6.64
3 7 18–20 300 7.85 7.83 7.84 7.85 7.82 7.82 7.77
3 8 21–23 300 9.01 8.98 9.00 9.03 8.97 8.98 8.93
3 9 24–26 300 10.46 10.42 10.45 10.48 10.40 10.40 10.37
3 10 27–29 300 11.73 11.68 11.70 11.69 11.67 11.66 11.59
4 6 20–23 400 12.91 12.84 12.83 12.86 12.79 12.76 12.51
4 7 24–27 400 14.96 14.87 14.90 14.95 14.82 14.84 14.50
4 8 28–31 400 17.35 17.24 17.19 17.22 17.15 17.07 16.72
4 9 32–35 400 18.98 18.93 18.92 18.97 18.81 18.79 18.47
4 10 36–39 400 21.21 21.11 21.07 21.08 20.99 20.96 20.54
5 6 25–29 500 20.24 20.08 20.00 20.08 19.90 19.76 19.01
5 7 30–34 500 24.01 23.85 23.78 23.82 23.56 23.45 22.52
5 8 35–39 500 27.45 27.22 27.04 27.03 26.88 26.74 25.73
5 9 40–44 500 30.16 29.97 29.86 29.93 29.75 29.50 28.31
5 10 45–49 500 33.44 33.28 33.06 32.96 32.93 32.68 31.45
6 6 30–35 600 29.68 29.40 29.17 29.19 28.80 28.60 26.96
6 7 36–41 600 34.27 33.95 33.74 33.65 33.35 33.01 31.00
6 8 42–47 600 38.89 38.47 38.19 38.05 37.77 37.46 35.31
6 9 48–53 600 43.49 43.23 42.85 42.69 42.46 42.10 39.52
6 10 54–59 600 47.80 47.48 46.88 46.69 46.56 46.23 43.31
7 6 35–41 700 40.29 39.82 39.61 39.29 38.73 38.41 35.45
7 7 42–48 700 46.94 46.34 46.07 45.75 45.05 44.77 41.10
7 8 49–55 700 52.80 52.31 51.93 51.42 50.81 50.32 46.25
7 9 56–62 700 59.16 58.60 58.13 57.40 57.08 56.59 51.91
7 10 63–69 700 65.14 64.40 63.82 63.30 62.80 62.10 57.02

Summary 12500 33.36 33.07 32.86 32.71 32.44 32.20 30.24

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.

Transport, 2024, 39(2): 146–160 157

From Figure 7a, we observe that the relative performance
of the 2 methods is more strongly correlated with H than
with S. Specifically, 3SH is more likely to outperform VRH
when H exceeds 5. Below this number, the likelihood of
3SH beating VRH decreases. This is likely because 3SH,
being well-designed, can handle long decision horizons
more accurately, leading to better results. From Figure 7b,

similar patterns emerge. When H < 5, 3SH tends to com-
pute faster. For H > 5, 3SH is possible to takes longer
time. At H = 5, 3SH is likely to be quicker when density is
higher, i.e., larger N for the same S. Therefore, while 3SH
generally outperforms VRH in both solution quality and
speed across all 3 datasets, a closer look reveals that 3SH
still spends more time to yield enhanced results.

Table 6. Computation times for the instances from Zhu et al. (2012)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
3 6 15–17 300 0.17 0.18 0.19 0.22 0.33 0.26 <10
3 7 18–20 300 0.07 0.06 0.24 0.11 0.09 0.13 <10
3 8 21–23 300 0.08 0.08 0.11 0.07 0.07 0.08 <10
3 9 24–26 300 0.06 0.07 0.43 0.09 0.14 0.07 <10
3 10 27–29 300 0.07 0.09 0.08 0.09 0.10 0.08 <10
4 6 20–23 400 0.12 0.11 0.12 0.15 0.42 0.18 <10
4 7 24–27 400 0.06 0.07 0.13 0.08 0.20 0.15 <10
4 8 28–31 400 0.07 0.07 0.18 0.08 0.08 0.09 <10
4 9 32–35 400 0.06 0.07 0.31 0.08 0.20 0.09 10
4 10 36–39 400 0.07 0.10 0.17 0.09 0.10 0.09 10
5 6 25–29 500 0.09 0.08 0.11 0.18 0.41 0.17 30
5 7 30–34 500 0.07 0.08 0.17 0.12 0.22 0.16 50
5 8 35–39 500 0.07 0.07 0.22 0.10 0.08 0.10 70
5 9 40–44 500 0.07 0.08 0.24 0.09 0.31 0.10 100
5 10 45–49 500 0.07 0.15 0.19 0.10 0.13 0.11 160
6 6 30–35 600 0.08 0.09 0.11 0.19 0.21 0.18 300
6 7 36–41 600 0.15 0.13 0.15 0.09 0.14 0.15 490
6 8 42–47 600 0.08 0.08 0.16 0.09 0.09 0.12 620
6 9 48–53 600 0.08 0.09 0.18 0.14 0.17 0.12 1240
6 10 54–59 600 0.08 0.16 0.19 0.13 0.11 0.13 1350
7 6 35–41 700 0.11 0.12 0.26 0.20 0.16 0.16 1980
7 7 42–48 700 0.11 0.10 0.26 0.11 0.11 0.13 4220
7 8 49–55 700 0.08 0.09 0.24 0.11 0.16 0.16 5520
7 9 56–62 700 0.10 0.10 0.15 0.13 0.22 0.14 15330
7 10 63–69 700 0.09 0.13 0.15 0.12 0.11 0.16 18500

Summary 12500 0.09 0.10 0.19 0.12 0.17 0.13 2760

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.

Figure 7. Comparative results of 3SH and VRH for all instances from 3 datasets:
a – computational results; b – computation times

a b

H

S

N N

S

H

Q. Zhu, B. Jin. A three-stage heuristic for optimizing container relocations in maritime container terminals158

4.6. Ablation analysis

2 enhancements and a new stage are introduced in 3SH;
in this subsection we assess the effects of these 3 com-
ponents. We choose the instances from Zhu et al. (2012)
in this experiment. Table 8 demonstrates the results of the
ablation analysis, in which “without enhancement 1” refers
to using the priority order only in Stage 1, “without en-
hancement 2” refers to using the original VRI in Stage 2,
and “without stage 3” refers to not adding the last stage
in 3SH. As we can see from the comparison, each compo-
nent can help improve the performance of the proposed
heuristic. In Section 3 we describe the motivation for the
enhancements introduced in 3SH but from the results we

have to admit that these enhancements also have limita-
tions and that they do not always improve the solution
quality. However, the complete 3SH is still the best choice
from an overall perspective.

5. Conclusions

In this article, we address the restricted CRP in maritime
container terminals and design a new heuristic to solve it.
The proposed heuristic combines the advantages of ex-
isting heuristic approaches while ameliorating their dis-
advantages. 3 benchmark datasets are used to test the
proposed heuristic, and the computational results show

Table 7. Solution improvement and time increase for 3SH compared with all other heuristics

Wu & Ting (2010) Caserta et al. (2011) Zhu et al. (2012)
solution

improvement [%]
time increase

[%]
solution

improvement [%]
time increase

[%]
solution

improvement [%]
time increase

[%]
Min–Max 6.03 37.93 5.43 36.36 3.60 30.77
PR4 4.12 44.83 4.97 40.91 2.70 23.08
Chain 4.26 31.03 3.35 22.73 2.05 –46.15
ChainF 3.09 20.69 2.05 27.27 1.58 7.69
VRH 0.92 –3.45 0.61 –13.64 0.75 –30.77

Table 8. Ablation analysis of 3SH on the instances from Zhu et al. (2012)

H S N #inst 3SH Without enhancement 1 Without enhancement 2 Without stage 3
3 6 15–17 300 6.67 6.67 6.68 6.67
3 7 18–20 300 7.82 7.82 7.82 7.82
3 8 21–23 300 8.98 8.98 8.98 8.97
3 9 24–26 300 10.40 10.40 10.41 10.40
3 10 27–29 300 11.66 11.66 11.67 11.66
4 6 20–23 400 12.76 12.79 12.77 12.78
4 7 24–27 400 14.84 14.88 14.78 14.84
4 8 28–31 400 17.07 17.11 17.08 17.08
4 9 32–35 400 18.79 18.82 18.78 18.79
4 10 36–39 400 20.96 20.98 20.97 20.99
5 6 25–29 500 19.76 19.82 19.78 19.77
5 7 30–34 500 23.45 23.53 23.43 23.45
5 8 35–39 500 26.74 26.80 26.70 26.79
5 9 40–44 500 29.50 29.59 29.55 29.61
5 10 45–49 500 32.68 32.76 32.77 32.80
6 6 30–35 600 28.60 28.68 28.64 28.68
6 7 36–41 600 33.01 33.10 33.11 33.12
6 8 42–47 600 37.46 37.59 37.51 37.55
6 9 48–53 600 42.10 42.20 42.15 42.21
6 10 54–59 600 46.23 46.34 46.32 46.35
7 6 35–41 700 38.41 38.55 38.43 38.50
7 7 42–48 700 44.77 44.84 44.88 44.82
7 8 49–55 700 50.32 50.36 50.61 50.42
7 9 56–62 700 56.59 56.62 56.78 56.67
7 10 63–69 700 62.10 62.20 62.40 62.27

Summary 12500 32.20 32.26 32.27 32.26

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.

Transport, 2024, 39(2): 146–160 159

that the proposed heuristic outperforms the other existing
heuristics in general, especially on the large-scale instanc-
es. Besides, the proposed heuristic wins in both efficiency
and effectiveness, delivering shorter computation time and
higher-quality solutions, compared to the state-of-the-art
heuristics. From a management perspective, the proposed
heuristic offers a practical tool for rapid decision-making
in logistics scenarios, due to its high computational speed
and quality solutions. Its quick computation is valuable
in time-sensitive logistics environments, and its high-
quality solution is beneficial to increase port operational
efficiency and thus affect the supply chain by speeding
up cargo throughput. For the future research, there are
several promising directions. As the proposed heuristic is
fast enough to provide a high-quality solution for a given
instance, it could be incorporated as an efficient evalu-
ation component in a mature meta-heuristic framework,
e.g., beam search, look-ahead search, etc. We will further
investigate this topic in our future work. Moreover, the
idea of considering multiple containers simultaneously has
the potential to better solve relevant container operation
problems. Expanding this approach to address these vari-
ants will also be a significant focus in our future research.

Funding

This work was supported by:
 ■ the National Natural Science Foundation of China (Grant
No 72101160);

 ■ the Stable Support Plan Program of Shenzhen Natural
Science Fund (Grant No 20200810160835003).

Disclosure statement

The authors declare no conflicts of interest.

References
Bacci, T.; Mattia, S.; Ventura, P. 2020. A branch-and-cut algorithm

for the restricted block relocation problem, European Journal
of Operational Research 287(2): 452–459.
https://doi.org/10.1016/j.ejor.2020.05.029

Bacci, T.; Mattia, S.; Ventura, P. 2019. The bounded beam search
algorithm for the block relocation problem, Computers & Op-
erations Research 103: 252–264.
https://doi.org/10.1016/j.cor.2018.11.008

Carlo, H. J.; Vis, I. F. A.; Roodbergen, K. J. 2014. Storage yard op-
erations in container terminals: literature overview, trends, and
research directions, European Journal of Operational Research
235(2), 412–430. https://doi.org/10.1016/j.ejor.2013.10.054

Caserta, M.; Schwarze, S.; Voß, S. 2012. A mathematical formula-
tion and complexity considerations for the blocks relocation
problem, European Journal of Operational Research 219(1):
96–104. https://doi.org/10.1016/j.ejor.2011.12.039

Caserta, M.; Voß, S.; Sniedovich, M. 2011. Applying the corridor
method to a blocks relocation problem, OR Spectrum 33(4):
915–929. https://doi.org/10.1007/s00291-009-0176-5

Expósito-Izquierdo, C.; Melián-Batista, B.; Moreno-Vega, J. M.
2014. A domain-specific knowledge-based heuristic for the
blocks relocation problem, Advanced Engineering Informatics
28(4): 327–343. https://doi.org/10.1016/j.aei.2014.03.003

Expósito-Izquierdo, C.; Melián-Batista, B.; Moreno-Vega, J. M.
2015. An exact approach for the blocks relocation problem,
Expert Systems with Applications 42(17–18): 6408–6422.
https://doi.org/10.1016/j.eswa.2015.04.021

Feillet, D.; Parragh, S. N.; Tricoire, F. 2019. A local-search based
heuristic for the unrestricted block relocation problem, Com-
puters & Operations Research 108: 44–56.
https://doi.org/10.1016/j.cor.2019.04.006

Galle, V.; Barnhart, C.; Jaillet, P. 2018. A new binary formulation of
the restricted container relocation problem based on a binary
encoding of configurations, European Journal of Operational
Research 267(2): 467–477.
https://doi.org/10.1016/j.ejor.2017.11.053

Jin, B.; Tanaka, S. 2023. An exact algorithm for the unrestricted
container relocation problem with new lower bounds and
dominance rules, European Journal of Operational Research
304(2): 494–514. https://doi.org/10.1016/j.ejor.2022.04.006

Jin, B.; Zhu, W.; Lim, A. 2015. Solving the container relocation
problem by an improved greedy look-ahead heuristic, Euro-
pean Journal of Operational Research 240(3): 837–847.
https://doi.org/10.1016/j.ejor.2014.07.038

Jovanovic, R.; Tuba, M.; Voß, S. 2019. An efficient ant colony op-
timization algorithm for the blocks relocation problem, Euro-
pean Journal of Operational Research 274(1): 78–90.
https://doi.org/10.1016/j.ejor.2018.09.038

Jovanovic, R.; Voß, S. 2014. A chain heuristic for the blocks reloca-
tion problem, Computers & Industrial Engineering 75: 79–86.
https://doi.org/10.1016/j.cie.2014.06.010

Kim, K. H.; Hong, G.-P. 2006. A heuristic rule for relocating blocks,
Computers & Operations Research, 33(4): 940–954.
https://doi.org/10.1016/j.cor.2004.08.005

Kim, K. H.; Park, Y. M.; Ryu, K.-R. 2000. Deriving decision rules to
locate export containers in container yards, European Journal
of Operational Research 124(1): 89–101.
https://doi.org/10.1016/S0377-2217(99)00116-2

Ku, D.; Arthanari, T. S. 2016. On the abstraction method for the
container relocation problem, Computers & Operations Re-
search 68: 110–122. https://doi.org/10.1016/j.cor.2015.11.006

Lee, Y.; Hsu, N.-Y. 2007. An optimization model for the container
pre-marshalling problem, Computers & Operations Research
34(11): 3295–3313. https://doi.org/10.1016/j.cor.2005.12.006

Lehnfeld, J.; Knust, S. 2014. Loading, unloading and premarshal-
ling of stacks in storage areas: survey and classification, Euro-
pean Journal of Operational Research 239(2): 297–312.
https://doi.org/10.1016/j.ejor.2014.03.011

Lersteau, C.; Shen, W. 2022. A survey of optimization methods for
block relocation and premarshalling problems, Computers &
Industrial Engineering 172: 108529.
https://doi.org/10.1016/j.cie.2022.108529

Maglić, Li.; Gulić, M.; Maglić, Lo. 2020. Optimization of container
relocation operations in port container terminals, Transport
35(1): 37–47. https://doi.org/10.3846/transport.2019.11628

Murty, K. G.; Wan, Y.-W.; Liu, J.; Tseng, M. M.; Leung, E.; Lai, K.-K.;
Chiu, H. W. C. 2005. Hongkong international terminals gains
elastic capacity using a data-intensive decision-support system,
Interfaces 35(1): 61–75. https://doi.org/10.1287/inte.1040.0120

Petering, M. E. H.; Hussein, M. I. 2013. A new mixed integer pro-
gram and extended look-ahead heuristic algorithm for the
block relocation problem, European Journal of Operational Re-
search 231(1): 120–130.
https://doi.org/10.1016/j.ejor.2013.05.037

Quispe, K. E. Y.; Lintzmayer, C. N.; Xavier, E. C. 2018. An exact
algorithm for the Blocks Relocation Problem with new lower
bounds, Computers & Operations Research 99: 206–217.
https://doi.org/10.1016/j.cor.2018.06.021

https://doi.org/10.1016/j.ejor.2020.05.029
https://doi.org/10.1016/j.cor.2018.11.008
https://doi.org/10.1016/j.ejor.2013.10.054
https://doi.org/10.1016/j.ejor.2011.12.039
https://doi.org/10.1007/s00291-009-0176-5
https://doi.org/10.1016/j.aei.2014.03.003
https://doi.org/10.1016/j.eswa.2015.04.021
https://doi.org/10.1016/j.cor.2019.04.006
https://doi.org/10.1016/j.ejor.2017.11.053
https://doi.org/10.1016/j.ejor.2022.04.006
https://doi.org/10.1016/j.ejor.2014.07.038
https://doi.org/10.1016/j.ejor.2018.09.038
https://doi.org/10.1016/j.cie.2014.06.010
https://doi.org/10.1016/j.cor.2004.08.005
https://doi.org/10.1016/S0377-2217(99)00116-2
https://doi.org/10.1016/j.cor.2015.11.006
https://doi.org/10.1016/j.cor.2005.12.006
https://doi.org/10.1016/j.ejor.2014.03.011
https://doi.org/10.1016/j.cie.2022.108529
https://doi.org/10.3846/transport.2019.11628
https://doi.org/10.1287/inte.1040.0120
https://doi.org/10.1016/j.ejor.2013.05.037
https://doi.org/10.1016/j.cor.2018.06.021

Q. Zhu, B. Jin. A three-stage heuristic for optimizing container relocations in maritime container terminals160

Tanaka, S.; Takii, K. 2016. A faster branch-and-bound algorithm for
the block relocation problem, IEEE Transactions on Automation
Science and Engineering 13(1): 181–190.
https://doi.org/10.1109/tase.2015.2434417

Tanaka, S.; Voß, S. 2022. An exact approach to the restricted block
relocation problem based on a new integer programming for-
mulation, European Journal of Operational Research 296(2):
485–503. https://doi.org/10.1016/j.ejor.2021.03.062

Ting, C.-J.; Wu, K.-C. 2017. Optimizing container relocation op-
erations at container yards with beam search, Transportation
Research Part E: Logistics and Transportation Review 103: 17–31.
https://doi.org/10.1016/j.tre.2017.04.010

Tricoire, F.; Scagnetti, J.; Beham, A. 2018. New insights on the
block relocation problem, Computers & Operations Research
89: 127–139. https://doi.org/10.1016/j.cor.2017.08.010

Ünlüyurt, T.; Aydın, C. 2012. Improved rehandling strategies for
the container retrieval process, Journal of Advanced Transpor-
tation 46(4): 378–393. https://doi.org/10.1002/atr.1193

Wu, K.-C.; Ting, C.-J. 2010. A beam search algorithm for minimiz-
ing reshuffle operations at container yards, in LOGMS 2010: the
1st International Conference on Logistics and Maritime Systems,
15–17 September 2010, Busan, Korea, 703–710.

Wu, K.-C.; Ting, C. J. 2012. Heuristic approaches for minimizing
reshuffle operations at container yard, in Proceedings of the
13th Asia Pacific Industrial Engineering & Management Systems
Conference, 2–5 December 2012, Phuket, Thailand, 1407–1451.

Zehendner, E.; Caserta, M.; Feillet, D.; Schwarze, S.; Voß, S. 2015.
An improved mathematical formulation for the blocks reloca-
tion problem, European Journal of Operational Research 245(2):
415–422. https://doi.org/10.1016/j.ejor.2015.03.032

Zhang, C.; Guan, H.; Yuan, Y.; Chen, W.; Wu, T. 2020. Machine
learning-driven algorithms for the container relocation prob-
lem, Transportation Research Part B: Methodological 139: 102–
131. https://doi.org/10.1016/j.trb.2020.05.017

Zhu, W.; Qin, H.; Lim, A.; Zhang, H. 2012. Iterative deepening A*
algorithms for the container relocation problem, IEEE Transac-
tions on Automation Science and Engineering 9(4): 710–722.
https://doi.org/10.1109/tase.2012.2198642

https://doi.org/10.1109/tase.2015.2434417
https://doi.org/10.1016/j.ejor.2021.03.062
https://doi.org/10.1016/j.tre.2017.04.010
https://doi.org/10.1016/j.cor.2017.08.010
https://doi.org/10.1002/atr.1193
https://doi.org/10.1016/j.ejor.2015.03.032
https://doi.org/10.1016/j.trb.2020.05.017
https://doi.org/10.1109/tase.2012.2198642

