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Notations

Variables:
S – number of stacks;
H – maximum height limit;
N – number of containers.

Abbreviations:
3SH – three-stage heuristic;
BRP – blocks relocation problem;
CRP – container relocation problem;

IP – integer programming;
LIFO – last-in, first-out;

NP – nondeterministic polynomial;
VRH – virtual relocation heuristic;
VRI – virtual relocation index.

1. Introduction

Economic globalization poses great challenges to the 
ocean shipping industry. The efficiency of container trans-
port, which plays a key role in the maritime logistics sys-
tem, is in need of advancement and streamlining. Impor-
tantly, maritime container terminals act as the hub nodes 
that connect sea and land container transport by providing 
temporary storage space for container transshipment. An 
efficient operation process at a terminal can reduce equip-
ment consumption, alleviate traffic congestion, and reduce 
vessel turnaround time, thus increasing the competitive-
ness of the port.

A maritime container terminal is a complex system that 
generally consists of 3 major functional areas, as shown in 
Figure 1. The quayside is an area where vessels can berth, 
the landside is an area for trucks or trains to handover 
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containers, and a yard is the main area where containers 
are stored. In the yard, containers are piled up vertically 
to form a stack, and several stacks in a row form a bay. A 
block is a parallel group of consecutive bays, and the yard 
consists of a set of such blocks. The operations in the yard 
include unloading/loading containers from/to the yard and 
pre-marshalling containers within the yard (Lehnfeld, Knust 
2014). In this article, we focus on the unloading opera-
tions, i.e., retrieving containers from the yard.

Let us consider a bay consisting of S stacks indexed 
from 1 to S, whose maximum height is limited to H. The 
tiers in the bay are indexed from 1 to H from bottom to 
top, and a specified location indexed by its stack and tier is 
called a slot. There are in total N containers initially stored 
in the bay, and each container is assigned a unique integer 
value from 1 to N to indicate its retrieval priority. Here, 
a smaller priority value indicates an earlier retrieval or-
der. The objective of the problem is to minimize the total 
number of relocations needed to retrieve all containers in 
the bay according to their priority values, i.e., from 1 to N.

If the containers to be retrieved earlier are all placed 
on top of those to be retrieved later, then the entire re-
trieval process can be completed at ease. However, an 
optimal stacking order is not always the case in reality, 
because containers arrive at the terminal at random and 
most of the time, terminal operators do not have enough 
time to rearrange these containers after the exact retrieval 
sequence is available. During the retrieval process, the tar-
get container is defined as the container to be retrieved 
next, and the stack it is located in is called the source stack. 

If the target container is not at the top of the source stack, 
then all blocking containers placed above it have to be 
relocated to other stacks 1st. A decision has to be made 
for each blocking container to choose the best destination 
stack to be relocated to. Since relocation operations are 
valueless and time-consuming, the total number of relo-
cations needs to be minimized to raise the efficiency of 
the retrieval process. This optimization problem is known 
as the CRP or the BRP in the literature, which has been 
proven to be NP-hard (Caserta et al. 2012).

Figure 2 presents an example depicting the 1st few 
steps in solving a CRP instance. 1st, container 1 is imme-
diately removed from the bay since it is retrievable, i.e., it 
is at the top of stack 3. Then, in order to make container 
2 retrievable, containers 3 and 13 are relocated from stack 
2 to stacks 3 and 4, respectively. It is assumed that reloca-
tions only occur to the blocking containers atop the target 
container, which is a common practice in many terminals. 
The relocation problem with this restriction is also known 
as the restricted CRP in the literature.

In this article, we propose a method called the 3SH 
to address the CRP, which extends the decision horizon 
to deal with multiple blocking containers simultaneously. 
Experimental results show that it outperforms the state-
of-the-art heuristics on 3 sets of benchmark instances. 
The remainder of this article is organized as follows. Sec-
tion 1 – introduction. Section 2 reviews related works in 
the literature. Sections 3 describes the proposed method, 
and Section 4 presents the experimental results. Lastly, 
Section 5 concludes the article.

Figure 1. Structure of a maritime container terminal

Figure 2. Example of retrieval and relocation operations
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2. Literature review

As shown in Figure 1, there are 3 types of container han-
dling processes in a container yard. There is the loading 
process in which incoming containers delivered by ves-
sels/trucks need to be stored in a designated space, the 
pre-marshalling process in which the containers already 
stacked in the yard need to be rearranged to reduce the 
overall retrieval time in the upcoming unloading process, 
and the unloading process in which some containers in the 
yard need to be retrieved in a predetermined sequence for 
further transportation. Lehnfeld & Knust (2014) and Carlo 
et al. (2014) provided comprehensive surveys on existing 
yard optimization problems based on this classification 
scheme. The container stacking problem (e.g., Kim et al. 
2000) occurs in the loading process to determine the lo-
cations for stacking incoming containers so as to mini-
mize the total number of future relocations. For the same 
purpose, the container pre-marshalling problem (e.g., Lee, 
Hsu 2007) is raised in the pre-marshalling process. Finally, 
the CRP arises in the unloading process.

To the best of our knowledge, Kim & Hong (2006) was 
the 1st to study the CRP. They formally introduced the 
problem in the form of the restricted version, and they 
also proposed a rule-based heuristic and a branch-and-
bound algorithm to solve it. Caserta et al. (2012) and Zhu 
et al. (2012) were the 1st to extend the CRP to the unre-
stricted version. A survey of optimization methods for the 
CRP can be found in Lersteau & Shen (2022). Caserta et al. 
(2012) presented integer linear programming formulations 
for both the restricted and unrestricted versions, and also 
designed a simple rule of thumb to solve the problem. Zhu 
et al. (2012) investigated the application of the iterative A* 
algorithm in solving both versions of the CRP. Since then, 
a number of studies have been proposed to tackle the 
restricted version (Jovanovic, Voß, 2014; Ting, Wu 2017; 
Quispe et al. 2018; Bacci et al. 2019, 2020; Zhang et al. 
2020) or the unrestricted version (Petering, Hussein 2013; 
Jin et al. 2015; Tricoire et al. 2018; Feillet et al. 2019; Jin, 
Tanaka 2023), and some scholars studied both versions 
at the same time (Jovanovic et al., 2019). This article is 
focused on the restricted version.

There have been several IP models proposed for the 
restricted CRP in the literature. Caserta et al. (2012) gave 
an IP formulation named BRP-II, which was later corrected 
by Zehendner et al. (2015). Galle et al. (2018) presented 
a new integer program called CRP-I, which uses a smart 
pairwise encoding to describe the relative positions of the 
containers. Bacci et al. (2020) proposed a new IP formu-
lation as well as a branch-and-cut algorithm. Recently, 
Tanaka & Voß (2022) proposed a novel IP model based 
on truncated relocation sequences. This model is solved 
repeatedly with an iteratively expanding set of truncated 
relocation sequences, until an optimal solution is found. 
Another branch of exact approaches to the restricted CRP 
includes branch-and-bound search (Kim, Hong 2006; Ex-
pósito-Izquierdo et al. 2014, 2015; Ku, Arthanari 2016) and 
iterative deepening search (Zhu et al. 2012; Tanaka, Takii 
2016; Quispe et al. 2018).

Despite the fact that the above exact approaches are 
guaranteed to obtain optimal solutions, the computation 
time required increases dramatically as the instance size 
increases. Even the most efficient exact algorithm (Tan-
aka, Voß 2022) requires hours to solve an instance with 
10 stacks and 10 tiers. As a result, a substantial amount 
of research has been dedicated to the design of heuris-
tic approaches that can yield high-quality solutions in a 
relatively short computation time. The existing heuristic 
approaches can be broadly classified into rule-based heu-
ristics and meta-heuristics depending on the complexity of 
the algorithmic design. Rule-based heuristics are greedy 
algorithms that repeatedly determine and perform the 
next relocation until the bay becomes empty. The exist-
ing rule-based heuristics for the restricted CRP include 
the heuristic based on the expected number of additional 
relocations (Kim, Hong 2006), the reshuffle index heuristic 
(Murty et al. 2005), the Min–Max heuristic (Caserta et al. 
2012), the PR4 heuristic (Zhu et al. 2012), the chain heu-
ristic (Jovanovic, Voß 2014), the Greedy1 heuristic (Ünlüy-
urt, Aydın 2012), the group assignment heuristic (Wu, Ting 
2012), the VRH (Ting, Wu 2017), and the machine learning-
driven upper bound method (Zhang et al. 2020). The exist-
ing meta-heuristics include beam search (Ting, Wu 2017; 
Zhang et al. 2020) and its bounded version (Bacci et al. 
2019), corridor method (Caserta et al. 2011), ant colony 
algorithm (Jovanovic et al. 2019), and genetic algorithm 
(Maglić et al. 2020).

In this article, we are concerned with rule-based heu-
ristics. Murty et al. (2005) designed the reshuffle index 
heuristic, which moves the blocking container to the stack 
where it will block the least number of containers. It ac-
counts for all containers causing additional relocations, 
without giving special attention to the container with the 
smallest priority value. This poses a major shortcoming 
because other containers are likely to be moved anyway 
when retrieving the container with the smallest prior-
ity value, making their inclusion irrelevant. The Min–Max 
heuristic by Caserta et al. (2012) corrected this by focusing 
on the container with the smallest priority value in each 
stack. It 1st aims to place the blocking container in a stack 
that will not cause further relocations. 2nd aims to choose 
a stack whose smallest priority value closely matches the 
priority of the blocking container. The PR4 heuristic by 
Zhu et al. (2012) modified the Min–Max heuristic by intri-
cately handling a special case. When moving the blocking 
container to any other stack inevitably causes additional 
relocations, the Min–Max heuristic chooses the stack with 
the largest priority value. If the stack selected by the Min–
Max heuristic has only one available slot, the PR4 heuris-
tic instead chooses the stack with the 2nd-largest priority 
value. The aforementioned heuristics make relocation de-
cisions for just one blocking container at a time. However, 
a more comprehensive approach that considers multiple 
containers simultaneously has the potential to yield bet-
ter solutions. This line of research is exemplified by the 
chain heuristic (Jovanovic, Voß 2014) and the VRH (Ting, 
Wu 2017), and is further extended in our study.
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3. 3SH

3.1. Motivation of the proposed method

A heuristic for the restricted CRP describes a rule that de-
cides the destination stacks for the blocking containers 
placed above the target container. Most existing heuris-
tics make relocation decisions for these containers, one 
by one, from top to bottom; these individual decisions do 
not consider the overall impact of each decision. Generally 
speaking, it is beneficial to take multiple containers into 
account and make a more thoughtful decision by evaluat-
ing the overall cost of relocating them. 2 existing heuristics 
in the literature have adopted this idea. One is the chain 
heuristic proposed by Jovanovic & Voß (2014). When de-
ciding the destination stack for the current container to be 
relocated, the chain heuristic checks whether it is better to 
reserve a potential stack for relocation of the subsequent 
container. The major limitation of the chain heuristic is that 
it considers only 2 containers in a row. The other heuristic 
considering multiple containers is the VRH proposed by 
Ting & Wu (2017), which extends the decision horizon to 
all blocking containers above the target container. How-
ever, VRH deteriorates in the case where there is only one 
container in the decision horizon.

In this section, we introduce a new heuristic called 3SH, 
which combines the advantages of the 2 above-mentioned 
heuristics while alleviating their disadvantages. Similar to 
VRH, 3SH determines the destination stacks for all block-
ing containers above the target container simultaneously. 
As the name implies, all the decisions will be completed 
in 3 stages. The 1st 2 stages are derived from VRH with 
effective enhancements. In the 1st stage, containers that 
do not cause additional relocations are assigned to suit-
able destination stacks 1st, while the rest will be assigned 
in the 2nd stage. Finally, in the last stage, the complete 
assignment identified in the previous stages is adjusted 
to further improve the solution. Figure 3 provides an over-
view of the steps completed at each stage.

3.2. 1st stage: compute a partial assignment

Relocating a container onto a stack whose priority is high-
er than the relocated container results in an additional re-

location, since the relocated container has to be relocated 
again. Here, the priority of a stack is defined by the small-
est priority value among all the containers in it; if the stack 
is empty, its priority value is set to N +1. The goal of the 
1st stage is to assign as many blocking containers as pos-
sible without causing any additional relocations.

Let us start by recalling the 1st phase of VRH. In the 
1st phase of VRH, the blocking containers are processed 
in descending order of their priority values, which we call 
the priority order. For each container c, if there exists at 
least one stack such that: (1) it differs from the source 
stack, (2) it is not fully occupied, (3) its priority value is 
larger than c, and (4) putting c onto the top of this stack 
will not violate the LIFO constraint, then container c is vir-
tually moved to the stack with the smallest priority value; 
otherwise, container c remains unassigned. Conditions (1) 
and (2) are necessary for a feasible relocation, condition (3)  
ensures that container c would be non-blocking after the 
relocation, and condition (4) is mandatory to prevent from 
violating the natural relocation order.

However, such a priority order is not always better 
than the natural order from top to bottom. Based on the 
priority order, after container c chooses its destination 
stack, this chosen stack will be excluded for all contain-
ers placed above c due to the LIFO constraint. Obviously, 
this exclusion may make the priority order worse than the 
natural order. Figure 4 demonstrates an example, in which 
containers 11, 8, and 15 are the blocking containers from 
top to bottom, and there is only one empty stack with a 
sufficiently large priority value of 16. The circled numbers 
next to the containers represent the respective decision 
sequence in each order. In the priority order, only con-
tainer 15 can be relocated to this stack without causing 
additional relocations, while in the natural order, contain-
ers 11 and 8 can be relocated to this stack without causing 
additional relocations.

To generate a better partial assignment in the 1st 
stage, we examine both the priority order and the natural 
order and choose the one that assigns more containers 
without causing additional relocations. Note that in the 
natural order, the LIFO constraint is automatically satisfied, 
so we do not need to check it during the decision process.

Figure 3. Flowchart of the 3SH
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3.3. 2nd stage: complete the assignment

The 1st stage obtains a partial assignment for the con-
tainers that can be relocated without causing any addi-
tional relocations. For the sake of simplicity, we consider 
these containers to have been virtually moved onto the 
designated destination stack. The task of the 2nd stage 
is to assign the remaining containers after the 1st stage, 
which will cause additional relocations. Due to the LIFO 
constraint, these containers may have to be inserted into 
a middle position between those that have been virtu-
ally relocated. For each blocking container c considered in 
the 2nd stage, the specific position to be inserted to each 
candidate stack s is unique due to the LIFO constraint. In 
this way, the containers in stack s, including the original 
containers placed in it and those having been virtually re-
located to it, can be divided into 2 parts. Let U denote 
the number of upper containers whose priority values are 
larger than c, and let u and l denote the smallest priority 
values within the upper and lower-parts, respectively. The 
VRH processes the remaining containers in ascending or-
der of priority values, and for each containerc, it calculates 
the so-called VRI for each candidate stack s as follows:

( )min , , iforiginal ;VRI
otherw, e

1
is ,

l c c u U
Nc u

 − −= 


≤

− −

where: the differences between container c and the lower 
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tively. If no more than one additional relocation exists (i.e., 
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where: E represents the number of empty slots in the con-
sidered candidate stack s. The situations of U = 1 and U > 
1 are the same as that in VRH, while for U = 0, we in ad-

dition consider 2 cases depending on E. Note that U = 0  
implies that either the upper-part is empty or all the up-
per containers have smaller priority values than c. If the 
considered candidate stack s has more than one empty 
slot (i.e., E > 1), we only consider the lower-part differ-
ence. Otherwise, we consider the opposite of the lower-
part difference with a penalty of –2N added to reduce the 
weight of the candidate stack. The purpose of using the 
opposite of the lower-part difference in the case of E = 1 
is to prevent wasting potential candidate stacks with large 
priority values.

Figure 5 shows an example demonstrating how the 
enhanced VRI can improve the decision. With the original 
VRI, container 15 chooses stack 4 as its destination stack, 
making stack 4 fully occupied. Subsequently, after contain-
er 5 is retrieved, container 6 becomes the target container, 
and container 9 inevitably causes an additional relocation. 
However, in the proposed 3SH, container 15 chooses stack 
2 as its destination stack according to the enhanced VRI, 
because the scores for stacks 2, 3, and 4 are −7, −9, and 
−25, respectively. Thus, stack 4 will be reserved to better 
accommodate other blocking containers. Specifically in the 
example shown, container 9 will be relocated to the last 
empty slot of stack 4, with no additional relocation caused.

3.4. Last stage: adjust the last relocation

After the previous 2 stages, all blocking containers above 
the target container have been assigned to the proper des-
tination stacks. The last stage attempts to further improve 
the obtained arrangement. We denote the bottommost 
blocking container above the current target container as c 
and the topmost blocking container above the next target 
container as d. After all the containers above container c 
have been relocated to their designated destination stacks, 
we check whether it would be better for container c to 
give up its destination stack s to container d.

2 situations will be compared in a similar way to that 
in research by Jovanovic & Voß (2014). In the 1st situation, 
container c will be relocated to stack s as planned, and the 
score D1 is computed as the priority of stack s minus c. 
After that, container d chooses its destination stack using 
the Min–Max rule (Caserta et al. 2012), and the score D2 
is equal to the priority of the chosen stack minus d. In the 
2nd situation, container c re-selects its destination stack 
using the Min–Max rule with the exclusion of stack s, and 
the score R1 is computed as the chosen stack minus c. 
With regard to container d, the score R2 is computed as 
the priority of stack s minus d. The 2nd situation is consid-
ered to be a better choice if the following conditions are 
satisfied: (1) D1 > R2 > 0 and (2) D2R1 > 0. The 1st condi-
tion implies that both containers c and d will not cause 
additional relocations if they are relocated to stack s, and 
that the difference of priority between stack s and con-
tainer c is larger than that of d. The 2nd condition implies 
that the relocations specified by D2 and R1 both cause 
additional relocations, or neither of them cause additional 
relocations.

Figure 4. Example for comparing the priority order and the 
natural order in the 1st stage
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Figure 6 demonstrates an example in which the last 
stage reduces one relocation. The last blocking container 
to be relocated for retrieving container 5 is container 11. 
The last stage decides that stack 3 should be reserved 
for container 13, which is the topmost blocking container 
above the next target container 6. Although by making 
container 11 cause an additional relocation, it prevents 
container 13 from causing any additional relocation and 
yields a better place for receiving the other blocking con-
tainers that follow.

3.5. Merge consecutive decision horizons

Roughly speaking, the decision horizon of the proposed 
3SH is the set of all blocking containers above the current 
target container. However, in some special cases, consecu-

tive decision horizons could be merged to further improve 
the solution quality. Specifically, if the next target contain-
er c + 1 is at a lower tier in the same stack of the current 
target container c, we can simply omit the current target 
container c from the bay and make more comprehensive 
decisions for the merged set of blocking containers above 
container c + 1.

4. Computational experiments

4.1. Experimental settings

To evaluate the performance of the proposed 3SH, 3 sets 
of instances, which are generated by Wu & Ting (2010), 
Caserta et al. (2011), and Zhu et al. (2012), are tested in 
the experiments. 5 existing heuristic approaches in the lit-

Figure 5. Example for comparing the original VRI and the enhanced VRI in the 2nd stage

Figure 6. Illustration for the effect of the last stage
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erature are used for comparison, namely, (1) Min–Max by 
Caserta et al. (2012), (2) PR4 by Zhu et al. (2012), (3) Chain 
and (4) ChainF by Jovanovic & Voß (2014), and (5) VRH by 
Ting & Wu (2017). Among them, ChainF and VRH are the 
most promising ones, which have been used as an impor-
tant component in the meta-heuristic approaches by Bacci 
et al. (2019) and Zhang et al. (2020), respectively.

All heuristic algorithms are programmed in Java and 
run on a desktop computer with an Intel Core i5 1.4 GHz 
CPU and 16 GB of RAM. The exact algorithm for calculat-
ing the optimal values for the instances from Wu & Ting 
(2010) is programmed in C and run on the same computer 
under a time limit of one minute for each instance. The 
source code of the exact algorithm is available online on 
https://github.com/jinboszu/rcrp-idbb/. Optimal values and 
computation times for the instances from Caserta et al. 
(2011) and Zhu et al. (2012) are directly obtained from 
Tanaka & Voß (2022). Their experiments were conducted 
on a desktop computer equipped with an Intel Core i9-
9900K 3.6 GHz CPU and 64 GB of RAM under a time limit 
of one hour for each instance.

For each test dataset, we present a table containing 
the detailed results of all 6 compared heuristics and the 
optimal values of the exact algorithm, accompanied by an-
other table containing the computation times of all com-
pared heuristics and the exact algorithm. The instances in 
each dataset are grouped by the maximum height H  and 
the number of stacks S. For each heuristic, the average 
number of relocations and the average computation time 
in milliseconds for each group of instances are reported. 
A value in bold indicates that the corresponding heuristic 
provides the best result for the corresponding group of 
instances. Lastly, we conduct an ablation study of 3SH to 
further assess the effect of the enhancements introduced 
in Section 3.

4.2. Results for the instances  
from Wu & Ting (2010)

The 1st experiment is carried out on the instances gen-
erated by Wu & Ting (2010). This dataset is divided 
into 48 groups, where each group is characterized by 
the maximum height { }83, ,H∈ …  and the number of 
stacks { }... 103, ,S ∈

 
, and the number of containers N in 

each group is defined by ( )1 1N S H= − ⋅ + . There are 40 
instances in each group, and hence the total number of 
instances in the dataset is 1920. Table 1 shows the compu-
tational results of all 6 of the above-mentioned heuristics 
and the optimal values. The comparison indicates that the 
proposed 3SH performs the best among all the compared 
heuristics, winning 35 out of a total of 48 groups. Addi-
tionally, 3SH also performs the best in terms of average 
performance, with an optimal gap of 7.29%. The reason is 
that our method utilizes more future blocking container 
information than the other heuristics to help optimize the 
relocations. Granted that the enhancements of 3SH do not 
always improve the solution quality compared to VRH, we 
find that the groups on which 3SH does not provide the 

best results are mostly small-scale, and that the advantage 
of 3SH over the other heuristics becomes more significant 
as the instance size increases. Table 2 presents the com-
putation times of all 6 compared heuristics and the exact 
algorithm. Among the heuristics, 3SH takes shorter aver-
age time compared to VRH. The exact algorithm performs 
faster than the heuristics for small-scale instances where 
H < 5 or S < 5, but is significantly slower for large-scale 
instances.

4.3. Results for the instances  
from Caserta et al. (2011)
Next, we assess the performance of 3SH on the instances 
provided by Caserta et al. (2011). This dataset includes 21 
groups of instances, where each group consists of 40 ran-
domly generated instances of the same instance size. In 
the original dataset, all stacks in each instance have the 
same initial height K, but the maximum height H is not 
given. A widely accepted practice is to add 2 empty tiers 
above the containers in each instance, i.e., H = K + 2. Ta-
ble 3 summarizes the computational results of all 6 com-
pared heuristics and provides the optimal values. Similar 
to the results in the previous experiment, 3SH takes a lead 
over the other heuristics by winning 15 out of a total of 21 
groups. Also, 3SH achieves the best average results with 
an optimal gap of 10.67%. It is also interesting to observe 
from the comparison that the heuristics based on simpler 
rules (i.e., Min–Max, PR4, Chain, and ChainF) turn out to 
perform better on smaller instances, for example, those 
with K = 3. Table 4 lists the computation times of all 6 
compared heuristics and the exact algorithm. Similar to 
the results in the above experiment, in terms of average 
computation time, PR4 executes the fastest and 3SH runs 
faster than VRH, and the exact algorithm takes much more 
time in large-scale scenarios.

4.4. Results for the instances  
from Zhu et al. (2012)
The instances from Zhu et al. (2012) are characterized by 
3 parameters: the maximum height { }73, ...,H∈ , the num-
ber of stacks 0}{6, 1,S ∈ … , and the number of containers 

{ }1, ...,N HSH H S∈ − − . There are in total 125 combinations 
of (H, S, N), and 100 instances are randomly generated 
for each combination. This dataset represents the situa-
tion where the bay is relatively fully occupied, which in-
creases the problem-solving difficulties. Table 5 shows the 
computational results of the 6 compared heuristics and 
the optimal results for the instances grouped by H and 
S. The proposed 3SH outperforms the other competitors 
remarkably, winning 23 out of a total of 25 groups. The 
best results for the rest 2 groups are given by VRH, while 
3SH comes in 2nd only by a small margin. 3SH has the 
best average performance among all methods with an op-
timal gap of 6.48%. We deduce the reason for the superior 
performance of VRH and 3SH as follows. The density of in-
stances in this experiment is considerably higher than that 
in the previous 2 experiments, so it is more likely to have 
more blocking containers during the retrieval process.  

https://github.com/jinboszu/rcrp-idbb/
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Table 1. Computational results for the instances from Wu & Ting (2010)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
3 3 7 40 3.43 3.38 3.42 3.38 3.37 3.35 3.30
3 4 10 40 4.95 4.88 4.95 4.95 4.87 4.90 4.85
3 5 13 40 5.75 5.78 5.75 5.80 5.75 5.78 5.75
3 6 16 40 7.73 7.70 7.72 7.85 7.70 7.70 7.65
3 7 19 40 9.03 9.00 9.05 9.17 9.02 9.03 8.95
3 8 22 40 9.88 9.75 9.87 9.75 9.72 9.73 9.73
3 9 25 40 11.63 11.58 11.60 11.57 11.55 11.55 11.45
3 10 28 40 12.03 11.93 12.02 11.97 11.95 11.93 11.88
4 3 9 40 5.83 5.73 5.82 5.95 5.70 5.73 5.68
4 4 13 40 8.75 8.55 8.72 8.57 8.52 8.55 8.43
4 5 17 40 11.40 11.43 11.35 11.40 11.30 11.43 10.98
4 6 21 40 12.68 12.55 12.55 12.60 12.50 12.38 12.03
4 7 25 40 16.35 16.03 16.45 16.07 15.97 15.98 15.48
4 8 29 40 18.73 18.58 18.52 18.52 18.30 18.30 17.95
4 9 33 40 19.85 19.83 19.72 19.87 19.60 19.53 19.15
4 10 37 40 23.60 23.23 23.32 23.25 23.20 23.08 22.35
5 3 11 40 9.10 8.48 9.10 8.70 8.50 8.53 8.40
5 4 16 40 13.13 12.70 13.02 13.17 12.60 12.63 12.25
5 5 21 40 17.08 16.45 16.95 16.65 16.20 16.13 15.58
5 6 26 40 20.60 20.50 20.42 20.52 20.22 20.05 19.33
5 7 31 40 23.15 23.05 22.92 22.70 22.60 22.45 21.35
5 8 36 40 27.68 27.05 27.37 26.82 26.67 26.43 25.40
5 9 41 40 31.00 30.60 30.35 30.55 29.70 29.65 28.65
5 10 46 40 34.50 33.83 33.80 33.45 33.35 33.05 31.70
6 3 13 40 12.98 12.33 12.77 12.30 12.20 12.18 11.50
6 4 19 40 17.15 16.88 17.05 16.92 16.52 16.55 15.63
6 5 25 40 23.93 23.33 23.52 23.57 22.55 22.35 21.05
6 6 31 40 29.03 28.63 28.77 28.57 28.22 27.78 25.98
6 7 37 40 34.40 33.65 34.07 34.07 33.15 32.68 30.75
6 8 43 40 40.48 39.60 39.65 38.90 38.97 38.50 35.68
6 9 49 40 44.90 44.20 44.50 43.30 42.57 42.45 39.68
6 10 55 40 48.80 48.35 47.77 47.45 46.95 46.10 43.60
7 3 15 40 16.63 16.43 16.25 16.40 16.27 16.00 15.03
7 4 22 40 26.38 25.60 25.97 25.62 25.17 24.40 22.60
7 5 29 40 31.93 31.35 31.15 31.42 30.42 30.33 27.53
7 6 36 40 40.43 39.43 39.22 38.65 38.20 37.78 34.40
7 7 43 40 45.63 44.03 44.92 44.27 43.35 43.15 38.95
7 8 50 40 52.10 51.73 51.15 50.82 49.00 48.50 44.48
7 9 57 40 59.88 58.95 57.92 57.35 56.00 56.03 50.80
7 10 64 40 65.73 64.98 64.37 63.60 62.55 61.35 56.58
8 3 17 40 22.03 21.60 21.52 21.20 20.57 20.35 18.63
8 4 25 40 33.68 31.90 33.05 32.82 30.95 30.98 27.70
8 5 33 40 43.08 42.10 42.57 42.00 39.52 38.58 35.80
8 6 41 40 52.20 51.18 50.87 50.25 48.67 47.88 42.18
8 7 49 40 59.03 58.48 57.97 56.32 54.40 54.35 48.83
8 8 57 40 66.38 65.48 65.12 64.55 62.85 61.95 55.78
8 9 65 40 76.33 74.83 75.05 73.50 71.92 70.75 65.60
8 10 73 40 83.90 82.58 82.02 79.35 78.30 77.15 70.28

Summary 1920 28.85 28.33 28.37 28.05 27.46 27.21 25.36

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.
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Table 2. Computation times for the instances from Wu & Ting (2010)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
3 3 7 40 0.43 0.33 0.53 0.42 0.84 0.60 0.02
3 4 10 40 0.25 0.21 0.31 0.37 0.46 0.41 0.02
3 5 13 40 0.23 0.25 0.35 0.31 0.45 0.28 0.02
3 6 16 40 0.33 0.29 0.55 0.47 0.34 0.50 0.03
3 7 19 40 0.29 0.22 0.25 0.25 0.40 0.25 0.03
3 8 22 40 0.21 0.18 0.27 0.25 0.45 0.26 0.03
3 9 25 40 0.18 0.19 0.23 0.31 0.33 0.25 0.05
3 10 28 40 0.25 0.17 0.34 0.20 0.41 0.27 0.06
4 3 9 40 0.21 0.16 0.16 0.18 0.22 0.28 0.02
4 4 13 40 0.15 0.14 0.19 0.17 0.54 0.30 0.03
4 5 17 40 0.16 0.13 0.18 0.22 0.42 0.19 0.05
4 6 21 40 0.19 0.16 0.29 0.20 0.34 0.20 0.06
4 7 25 40 0.17 0.15 0.17 0.22 0.30 0.30 0.13
4 8 29 40 0.17 0.14 0.19 0.30 0.46 0.34 0.14
4 9 33 40 0.16 0.17 0.17 0.27 0.32 0.23 0.38
4 10 37 40 0.20 0.16 0.14 0.24 0.43 0.24 0.27
5 3 11 40 0.10 0.13 0.14 0.11 0.21 0.24 0.03
5 4 16 40 0.11 0.16 0.17 0.12 0.29 0.29 0.05
5 5 21 40 0.11 0.21 0.27 0.12 0.39 0.21 0.13
5 6 26 40 0.16 0.11 0.22 0.15 0.38 0.24 0.32
5 7 31 40 0.17 0.10 0.21 0.16 0.36 0.22 0.49
5 8 36 40 0.19 0.09 0.13 0.17 0.34 0.24 1.97
5 9 41 40 0.20 0.12 0.14 0.16 0.25 0.23 12.91
5 10 46 40 0.21 0.14 0.15 0.18 0.27 0.26 342.38
6 3 13 40 0.10 0.10 0.12 0.16 0.13 0.16 0.05
6 4 19 40 0.12 0.11 0.11 0.20 0.16 0.23 0.10
6 5 25 40 0.11 0.13 0.13 0.13 0.15 0.17 0.80
6 6 31 40 0.12 0.20 0.17 0.12 0.16 0.26 4.38
6 7 37 40 0.14 0.18 0.16 0.16 0.16 0.37 19.95
6 8 43 40 0.16 0.19 0.16 0.18 0.16 0.34 150.68
6 9 49 40 0.14 0.12 0.17 0.19 0.17 0.35 4765.07
6 10 55 40 0.15 0.13 0.18 0.21 0.24 0.36 5618.77
7 3 15 40 0.13 0.09 0.18 0.11 0.16 0.14 0.10
7 4 22 40 0.18 0.13 0.21 0.13 0.30 0.17 0.64
7 5 29 40 0.19 0.11 0.22 0.14 0.30 0.18 9.63
7 6 36 40 0.25 0.14 0.19 0.20 0.13 0.22 359.50
7 7 43 40 0.25 0.14 0.14 0.40 0.30 0.21 1401.14
7 8 50 40 0.29 0.15 0.15 0.36 0.25 0.23 4250.03
7 9 57 40 0.36 0.14 0.16 0.17 0.23 0.38 17242.84
7 10 64 40 0.15 0.34 0.20 0.19 0.27 0.54 32143.32
8 3 17 40 0.09 0.11 0.10 0.59 0.13 0.17 0.21
8 4 25 40 0.12 0.10 0.12 0.30 0.15 0.26 3.08
8 5 33 40 0.13 0.10 0.13 0.21 0.18 0.34 501.56
8 6 41 40 0.13 0.11 0.14 0.21 0.20 0.57 3826.94
8 7 49 40 0.14 0.15 0.14 0.23 0.20 0.47 21664.32
8 8 57 40 0.13 0.15 0.16 0.26 0.27 0.41 32384.26
8 9 65 40 0.18 0.13 0.16 0.24 0.23 0.31 53675.46
8 10 73 40 0.16 0.18 0.18 0.43 0.39 0.29 52462.15

Summary 1920 0.18 0.16 0.20 0.23 0.30 0.29 4809.26

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.
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Table 3. Computational results for the instances from Caserta et al. (2011)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
5 3 9 40 5.08 5.08 5.08 5.15 5.15 5.13 5.00
5 4 12 40 6.30 6.30 6.35 6.33 6.35 6.35 6.18
5 5 15 40 7.05 7.05 7.05 7.08 7.05 7.05 7.03
5 6 18 40 8.45 8.45 8.43 8.45 8.48 8.45 8.40
5 7 21 40 9.33 9.33 9.30 9.30 9.33 9.33 9.28
5 8 24 40 10.73 10.73 10.68 10.68 10.73 10.68 10.65
6 4 16 40 10.98 10.93 10.80 10.93 10.80 10.73 10.20
6 5 20 40 13.55 13.63 13.45 13.63 13.45 13.40 12.95
6 6 24 40 14.68 14.60 14.63 14.58 14.60 14.35 14.03
6 7 28 40 16.90 16.80 16.88 16.73 16.80 16.58 16.13
7 4 20 40 16.75 16.75 16.40 16.65 16.30 16.30 15.43
7 5 25 40 21.23 20.98 20.55 20.38 20.50 20.23 18.85
7 6 30 40 24.25 24.05 23.93 23.98 23.75 23.80 22.08
7 7 35 40 26.33 26.35 25.88 25.90 25.80 25.70 24.25
7 8 40 40 29.60 29.60 29.05 28.80 28.98 28.60 27.70
7 9 45 40 32.35 32.35 32.15 31.98 32.18 31.83 30.45
7 10 50 40 35.50 35.30 35.08 34.58 34.75 34.70 33.28
8 6 36 40 35.90 35.80 34.98 34.60 34.25 34.00 30.88
8 10 60 40 49.85 49.63 49.20 48.98 48.88 48.60 45.50

12 6 60 40 101.25 100.35 97.13 94.70 91.38 90.73 74.38
12 10 100 40 139.28 138.60 136.18 132.20 127.78 127.10 104.75

Summary 840 29.30 29.17 28.72 28.36 27.96 27.79 25.11

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.

Table 4. Computation times for the instances from Caserta et al. (2011)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
5 3 9 40 0.25 0.29 0.25 0.26 0.30 0.32 <10
5 4 12 40 0.14 0.14 0.25 0.16 0.21 0.25 <10
5 5 15 40 0.16 0.15 0.32 0.17 0.21 0.22 <10
5 6 18 40 0.15 0.13 0.15 0.24 0.16 0.17 <10
5 7 21 40 0.12 0.12 0.14 0.15 0.13 0.16 <10
5 8 24 40 0.12 0.11 0.18 0.13 0.22 0.15 <10
6 4 16 40 0.09 0.12 0.13 0.15 0.17 0.11 <10
6 5 20 40 0.14 0.15 0.15 0.12 0.21 0.13 <10
6 6 24 40 0.16 0.14 0.16 0.12 0.13 0.13 <10
6 7 28 40 0.13 0.12 0.12 0.11 0.13 0.16 <10
7 4 20 40 0.13 0.13 0.09 0.10 0.14 0.22 10
7 5 25 40 0.08 0.09 0.10 0.10 0.16 0.13 20
7 6 30 40 0.11 0.11 0.11 0.15 0.15 0.15 20
7 7 35 40 0.14 0.09 0.11 0.19 0.15 0.21 20
7 8 40 40 0.13 0.10 0.13 0.14 0.13 0.21 40
7 9 45 40 0.14 0.12 0.13 0.11 0.33 0.20 40
7 10 50 40 0.13 0.08 0.10 0.12 0.42 0.25 100
8 6 36 40 0.13 0.08 0.11 0.11 0.41 0.25 270
8 10 60 40 0.14 0.10 0.28 0.10 0.37 0.21 870

12 6 60 40 0.27 0.28 0.31 0.40 0.44 0.35 1214430
12 10 100 40 0.18 0.18 0.28 0.23 0.78 0.73 1519130

Summary 840 0.14 0.13 0.17 0.16 0.25 0.22 130236

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.
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Because VRH and 3SH make more comprehensive deci-
sions for all blocking containers above the target con-
tainer at a time, they are able to perform better in this 
experiment. Table 6 provides the computation times of all 
6 compared heuristics and the exact algorithm, showing 
that 3SH outperforms both VRH and Chain in terms of 
average computation time. Similarly, the exact algorithm 
consumes significantly more time when dealing with large-
scale groups.

4.5. Comparative analysis

An analysis is conducted to compare the solution quality 
and computation times of 3SH with other methods across 
3 datasets. In Table 7, “Solution Improvement” represents 
the improvement percentage in solution quality achieved 
by 3SH over the other compared algorithms. It is cal-
culated as the difference of the result of the compared 
algorithm and the result of 3SH over the result of 3SH. 
“Time Increase” signifies the percentage increase in com-
putational time when using 3SH compared to the other al-
gorithms. This is the result of the difference of the time of 
3SH and the time of the compared algorithm over the time 
of 3SH. Based on the average results from the table, 3SH 

is able to obtain better solutions than VRH in a shorter 
amount of time over all 3 datasets. Besides, on average, 
all the heuristics are capable of solving an instance within 
one millisecond, which is an exceptionally short amount of 
time that can be negligible in most cases.

To delve deeper into the relationship between VRH and 
3SH, we categorize all instances from the 3 datasets based 
on H, S, and N. The computational results and times are 
plotted using bubbles in Figure 7a and 7b, respectively. 
The size of each bubble represents the relative magnitude 
of the value, with larger bubbles indicating larger values. 
For each combination of H, S, and N, only the smaller 
value of VRH and 3SH is plotted; red bubbles signify val-
ues from VRH, while blue bubbles indicate values from 
3SH. We examine the proportion, location, and size of 
red and blue bubbles. From the perspective of solution 
quality, 3SH wins the majority of instances, with the los-
ing (red) bubbles mainly concentrated in the lower left 
corner, which are of small size. However, in terms of com-
putation time, 3SH wins just over half of the instances, 
but the winning (blue) bubbles are often larger in size. 
This experimentally demonstrates again why, on average, 
3SH outperforms VRH in both effectiveness and efficiency. 
Subsequently, we try to elucidate this methodologically. 

Table 5. Computational results for the instances from Zhu et al. (2012)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
3 6 15–17 300 6.71 6.68 6.71 6.72 6.67 6.67 6.64
3 7 18–20 300 7.85 7.83 7.84 7.85 7.82 7.82 7.77
3 8 21–23 300 9.01 8.98 9.00 9.03 8.97 8.98 8.93
3 9 24–26 300 10.46 10.42 10.45 10.48 10.40 10.40 10.37
3 10 27–29 300 11.73 11.68 11.70 11.69 11.67 11.66 11.59
4 6 20–23 400 12.91 12.84 12.83 12.86 12.79 12.76 12.51
4 7 24–27 400 14.96 14.87 14.90 14.95 14.82 14.84 14.50
4 8 28–31 400 17.35 17.24 17.19 17.22 17.15 17.07 16.72
4 9 32–35 400 18.98 18.93 18.92 18.97 18.81 18.79 18.47
4 10 36–39 400 21.21 21.11 21.07 21.08 20.99 20.96 20.54
5 6 25–29 500 20.24 20.08 20.00 20.08 19.90 19.76 19.01
5 7 30–34 500 24.01 23.85 23.78 23.82 23.56 23.45 22.52
5 8 35–39 500 27.45 27.22 27.04 27.03 26.88 26.74 25.73
5 9 40–44 500 30.16 29.97 29.86 29.93 29.75 29.50 28.31
5 10 45–49 500 33.44 33.28 33.06 32.96 32.93 32.68 31.45
6 6 30–35 600 29.68 29.40 29.17 29.19 28.80 28.60 26.96
6 7 36–41 600 34.27 33.95 33.74 33.65 33.35 33.01 31.00
6 8 42–47 600 38.89 38.47 38.19 38.05 37.77 37.46 35.31
6 9 48–53 600 43.49 43.23 42.85 42.69 42.46 42.10 39.52
6 10 54–59 600 47.80 47.48 46.88 46.69 46.56 46.23 43.31
7 6 35–41 700 40.29 39.82 39.61 39.29 38.73 38.41 35.45
7 7 42–48 700 46.94 46.34 46.07 45.75 45.05 44.77 41.10
7 8 49–55 700 52.80 52.31 51.93 51.42 50.81 50.32 46.25
7 9 56–62 700 59.16 58.60 58.13 57.40 57.08 56.59 51.91
7 10 63–69 700 65.14 64.40 63.82 63.30 62.80 62.10 57.02

Summary 12500 33.36 33.07 32.86 32.71 32.44 32.20 30.24

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.
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From Figure 7a, we observe that the relative performance 
of the 2 methods is more strongly correlated with H than 
with S. Specifically, 3SH is more likely to outperform VRH 
when H exceeds 5. Below this number, the likelihood of 
3SH beating VRH decreases. This is likely because 3SH, 
being well-designed, can handle long decision horizons 
more accurately, leading to better results. From Figure 7b, 

similar patterns emerge. When H < 5, 3SH tends to com-
pute faster. For H > 5, 3SH is possible to takes longer 
time. At H = 5, 3SH is likely to be quicker when density is 
higher, i.e., larger N for the same S. Therefore, while 3SH 
generally outperforms VRH in both solution quality and 
speed across all 3 datasets, a closer look reveals that 3SH 
still spends more time to yield enhanced results.

Table 6. Computation times for the instances from Zhu et al. (2012)

H S N #inst Min–Max PR4 Chain ChainF VRH 3SH Exact
3 6 15–17 300 0.17 0.18 0.19 0.22 0.33 0.26 <10
3 7 18–20 300 0.07 0.06 0.24 0.11 0.09 0.13 <10
3 8 21–23 300 0.08 0.08 0.11 0.07 0.07 0.08 <10
3 9 24–26 300 0.06 0.07 0.43 0.09 0.14 0.07 <10
3 10 27–29 300 0.07 0.09 0.08 0.09 0.10 0.08 <10
4 6 20–23 400 0.12 0.11 0.12 0.15 0.42 0.18 <10
4 7 24–27 400 0.06 0.07 0.13 0.08 0.20 0.15 <10
4 8 28–31 400 0.07 0.07 0.18 0.08 0.08 0.09 <10
4 9 32–35 400 0.06 0.07 0.31 0.08 0.20 0.09 10
4 10 36–39 400 0.07 0.10 0.17 0.09 0.10 0.09 10
5 6 25–29 500 0.09 0.08 0.11 0.18 0.41 0.17 30
5 7 30–34 500 0.07 0.08 0.17 0.12 0.22 0.16 50
5 8 35–39 500 0.07 0.07 0.22 0.10 0.08 0.10 70
5 9 40–44 500 0.07 0.08 0.24 0.09 0.31 0.10 100
5 10 45–49 500 0.07 0.15 0.19 0.10 0.13 0.11 160
6 6 30–35 600 0.08 0.09 0.11 0.19 0.21 0.18 300
6 7 36–41 600 0.15 0.13 0.15 0.09 0.14 0.15 490
6 8 42–47 600 0.08 0.08 0.16 0.09 0.09 0.12 620
6 9 48–53 600 0.08 0.09 0.18 0.14 0.17 0.12 1240
6 10 54–59 600 0.08 0.16 0.19 0.13 0.11 0.13 1350
7 6 35–41 700 0.11 0.12 0.26 0.20 0.16 0.16 1980
7 7 42–48 700 0.11 0.10 0.26 0.11 0.11 0.13 4220
7 8 49–55 700 0.08 0.09 0.24 0.11 0.16 0.16 5520
7 9 56–62 700 0.10 0.10 0.15 0.13 0.22 0.14 15330
7 10 63–69 700 0.09 0.13 0.15 0.12 0.11 0.16 18500

Summary 12500 0.09 0.10 0.19 0.12 0.17 0.13 2760

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.

Figure 7. Comparative results of 3SH and VRH for all instances from 3 datasets:  
a  – computational results; b  – computation times

a b

H

S

N N

S

H



Q. Zhu, B. Jin. A three-stage heuristic for optimizing container relocations in maritime container terminals158

4.6. Ablation analysis

2 enhancements and a new stage are introduced in 3SH; 
in this subsection we assess the effects of these 3 com-
ponents. We choose the instances from Zhu et al. (2012) 
in this experiment. Table 8 demonstrates the results of the 
ablation analysis, in which “without enhancement 1” refers 
to using the priority order only in Stage 1, “without en-
hancement 2” refers to using the original VRI in Stage 2, 
and “without stage 3” refers to not adding the last stage 
in 3SH. As we can see from the comparison, each compo-
nent can help improve the performance of the proposed 
heuristic. In Section 3 we describe the motivation for the 
enhancements introduced in 3SH but from the results we 

have to admit that these enhancements also have limita-
tions and that they do not always improve the solution 
quality. However, the complete 3SH is still the best choice 
from an overall perspective.

5. Conclusions

In this article, we address the restricted CRP in maritime 
container terminals and design a new heuristic to solve it. 
The proposed heuristic combines the advantages of ex-
isting heuristic approaches while ameliorating their dis-
advantages. 3 benchmark datasets are used to test the 
proposed heuristic, and the computational results show 

Table 7. Solution improvement and time increase for 3SH compared with all other heuristics

Wu & Ting (2010) Caserta et al. (2011) Zhu et al. (2012)
solution 

improvement [%]
time increase 

[%]
solution 

improvement [%]
time increase 

[%]
solution 

improvement [%]
time increase 

[%]
Min–Max 6.03 37.93 5.43 36.36 3.60 30.77
PR4 4.12 44.83 4.97 40.91 2.70 23.08
Chain 4.26 31.03 3.35 22.73 2.05 –46.15
ChainF 3.09 20.69 2.05 27.27 1.58 7.69
VRH 0.92 –3.45 0.61 –13.64 0.75 –30.77

Table 8. Ablation analysis of 3SH on the instances from Zhu et al. (2012)

H S N #inst 3SH Without enhancement 1 Without enhancement 2 Without stage 3
3 6 15–17 300 6.67 6.67 6.68 6.67
3 7 18–20 300 7.82 7.82 7.82 7.82
3 8 21–23 300 8.98 8.98 8.98 8.97
3 9 24–26 300 10.40 10.40 10.41 10.40
3 10 27–29 300 11.66 11.66 11.67 11.66
4 6 20–23 400 12.76 12.79 12.77 12.78
4 7 24–27 400 14.84 14.88 14.78 14.84
4 8 28–31 400 17.07 17.11 17.08 17.08
4 9 32–35 400 18.79 18.82 18.78 18.79
4 10 36–39 400 20.96 20.98 20.97 20.99
5 6 25–29 500 19.76 19.82 19.78 19.77
5 7 30–34 500 23.45 23.53 23.43 23.45
5 8 35–39 500 26.74 26.80 26.70 26.79
5 9 40–44 500 29.50 29.59 29.55 29.61
5 10 45–49 500 32.68 32.76 32.77 32.80
6 6 30–35 600 28.60 28.68 28.64 28.68
6 7 36–41 600 33.01 33.10 33.11 33.12
6 8 42–47 600 37.46 37.59 37.51 37.55
6 9 48–53 600 42.10 42.20 42.15 42.21
6 10 54–59 600 46.23 46.34 46.32 46.35
7 6 35–41 700 38.41 38.55 38.43 38.50
7 7 42–48 700 44.77 44.84 44.88 44.82
7 8 49–55 700 50.32 50.36 50.61 50.42
7 9 56–62 700 56.59 56.62 56.78 56.67
7 10 63–69 700 62.10 62.20 62.40 62.27

Summary 12500 32.20 32.26 32.27 32.26

Note: a value in bold indicates that the corresponding heuristic provides the best result for the corresponding group of instances.
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that the proposed heuristic outperforms the other existing 
heuristics in general, especially on the large-scale instanc-
es. Besides, the proposed heuristic wins in both efficiency 
and effectiveness, delivering shorter computation time and 
higher-quality solutions, compared to the state-of-the-art 
heuristics. From a management perspective, the proposed 
heuristic offers a practical tool for rapid decision-making 
in logistics scenarios, due to its high computational speed 
and quality solutions. Its quick computation is valuable 
in time-sensitive logistics environments, and its high-
quality solution is beneficial to increase port operational 
efficiency and thus affect the supply chain by speeding 
up cargo throughput. For the future research, there are 
several promising directions. As the proposed heuristic is 
fast enough to provide a high-quality solution for a given 
instance, it could be incorporated as an efficient evalu-
ation component in a mature meta-heuristic framework, 
e.g., beam search, look-ahead search, etc. We will further 
investigate this topic in our future work. Moreover, the 
idea of considering multiple containers simultaneously has 
the potential to better solve relevant container operation 
problems. Expanding this approach to address these vari-
ants will also be a significant focus in our future research.
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