Correlational analysis of pollutant emission intensity in various conditions of operation of the automotive internal combustion engine
Abstract
The aim of this article was to analyse the correlation of emission intensity of carbon monoxide, hydrocarbons, nitrogen oxides, and carbon dioxide in various conditions of operation of the automotive internal combustion engine. The operational properties of the engine were investigated on chassis dynamometer in driving test cycles simulating various real-world conditions of the vehicle drive: street congestions, urban traffic without congestions, extra-urban traffic, and high-speed traffic. The correlational dependence of the pollutant emission intensity on the non-negative effective power of the engine and the correlational interdependence between the emission intensity of individual pollutants were investigated. The coefficients of Pearson’s linear correlation, Spearman’s rank correlation, Kruskal’s gamma correlation, and Kendall’s tau correlation were calculated. It was found that the emission intensity of pollutants in the driving test cycles strongly depends on the dynamic states of operation of the engine. The time histories of the emission intensity of pollutants were strongly correlated with the non-negative effective power of the engine. There were only a few cases where this correlation can be assessed as weak. The time histories of the emission intensity of individual pollutants were also strongly correlated with each other, with only a few exemptions.
Keyword : motor vehicle, internal combustion engine, pollutant emission, correlational analysis, driving test cycle, dynamic state
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ajtay, D.; Weilenmann, M. 2004. Static and dynamic instantaneous emission modelling, International Journal of Environment and Pollution 22(3): 226–239. https://doi.org/10.1504/IJEP.2004.005534
Andersson, J.; May, J.; Favre, C.; Bosteels, D.; De Vries, S.; Heaney, M.; Keenan, M.; Mansell, J. 2014. On-road and chassis dynamometer evaluations of emissions from two Euro 6 diesel vehicles, SAE International Journal of Fuels and Lubricants 7(3): 919–934. https://doi.org/10.4271/2014-01-2826
André, M.; Keller, M.; Sjödin, Å.; Gadrat, M.; McCrae, I.; Dilara, P. 2009. The Artemis European tools for estimating the transport pollutant emissions, in Proceedings of the 18th Annual International Emission Inventory Conference “Comprehensive Inventories – Leveraging Technology and Resources”, 14–17 April 2009, Baltimore, Maryland, US, 1–10.
Barlow, T. J.; Latham, S.; McCrae, I. S.; Boutler, P. G. 2009. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle Emissions. Version 3. TRL Limited. 284 p. Available from Internet: https://assets.publishing.service.gov.uk/gov-ernment/uploads/system/uploads/attachment_data/file/4247/ppr-354.pdf
BAFU. 2010. Luftschadstoff-Emissionen des Strassenverkehrs 1990–2035. Bundesamt für Umwelt (BAFU), Schweiz. 130 S. Available from Internet: https://www.bafu.admin.ch/bafu/de/home/themen/luft/publikationen-studien/publikationen/luftschadstoff-emissionen-des-strassenverkehrs-1990-2035.html (in German).
Chłopek, Z. 1999. Modelowanie procesów emisji spalin w warunkach eksploatacji trakcyjnej silników spalinowych, in Prace Naukowe Politechniki Warszawskiej. Mechanika 173: 3–193 (in Polish).
Chłopek, Z. 2010. A correlation analysis of the pollutant emission from a self ignition engine, Combustion Engines (1): 25–31.
Chłopek, Z. 2012. Research on energy consumption by an electric automotive vehicle, The Archives of Automotive Engineering – Archiwum Motoryzacji (3): 19–31.
Chłopek, Z.; Biedrzycki, J.; Lasocki, J.; Wójcik, P. 2013a. Investigation of pollutant emissions from a motor vehicle engine in tests simulating real vehicle use in road traffic conditions, Combustion Engines (3): 202–207.
Chłopek, Z.; Biedrzycki, J.; Lasocki, J.; Wójcik, P. 2013b. Investigation of the motion of motor vehicles in Polish conditions, The Archives of Automotive Engineering – Archiwum Motoryzacji 60(2): 3–20.
Chłopek, Z.; Biedrzycki, J.; Lasocki, J.; Wójcik, P. 2015. Assessment of the impact of dynamic states of an internal combustion engine on its operational properties, Eksploatacja i Niezawodnosc – Maintenance and Reliability 17(1): 35–41. https://doi.org/10.17531/ein.2015.1.5
Chłopek, Z.; Biedrzycki, J.; Lasocki, J.; Wójcik, P. 2014. Examination of pollutant emissions and fuel consumption at tests simulating the real conditions of operation of a passenger car, The Archives of Automotive Engineering – Archiwum Motoryzacji 65(3): 3–18.
Chłopek, Z.; Piaseczny, L. 2013. Badania korelacyjne emisji zanieczyszczeń z silnika okrętowego znajdującego się w stanach dynamicznych, in V International Congress on Combustion Engines, 24–26 June 2013, Bielsko-Biała, Poland. (in Polish).
Chłopek, Z.; Szczepański, T. 2013. Correlation studies of combustion engines properties in dynamic states, Combustion Engines (3): 175–182.
Del Re, L.; Allgöwer, F.; Glielmo, L.; Guardiola, C.; Kolmanovsky, I. (Eds.). 2010. Automotive Model Predictive Control: Models, Methods and Applications. Springer-Verlag London. 290 p. https://doi.org/10.1007/978-1-84996-071-7
Delphi Technologies. 2016. 2016/2017 Worldwide Emission Standards: Passenger Cars and Light Duty. 104 p. Available from Internet: https://www.delphi.com/sites/default/files/in-line-files/delphi-worldwide-emissions-standards-passenger-cars-light-duty-2016-7.pdf
Ezzeddinne, M.; Castro, E.; Lengellé, R. 2008. Dynamic design of experiments for engine pollutants emissions modeling and optimization, SAE Technical Paper 2008-01-2454. https://doi.org/10.4271/2008-01-2454
Favre, C.; Bosteels, D.; May, J. 2013. Exhaust emissions from European market-available passenger cars evaluated on various drive cycles, SAE Technical Paper 2013-24-0154. https://doi.org/10.4271/2013-24-0154
INFRAS. 2018. The Handbook Emission Factors for Road Transport (HBEFA). Version 4.1. INFRAS, Switzerland.
Kendall, M. G. 1938. A new measure of rank correlation, Biometrika 30(1/2): 81–93. https://doi.org/10.2307/2332226
Kruskal, W. H.; Wallis, W. A. 1952. Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association 47(260): 583–621. https://doi.org/10.2307/2280779
Nobuyuki, S.; Baumann, W.; Ropke, K.; Knaak, M. 2013. Transient modeling of diesel engine emissions, International Journal of Automotive Engineering 4(3): 63–68. http://doi.org/10.20485/jsaeijae.4.3_63
Nollet, V.; Schadkowski, C.; Hue, S.; Flandrin, Y.; Dechaux, J.-C. 2000. Elaboration d’un cadastre d’émissions de polluants primaires dans la région Nord-Pas-de-Calais. Les transports automobiles, Pollution Atmosphérique 165: 109–119 (in French). Available from Internet: http://lodel.irevues.inist.fr/pollution-atmospherique/docannexe/file/3009/109_nollet.pdf
Pearson, K. 1904. On the Theory of Contingency and its Relation to Association and Normal Correlation. Dulau and Co. 35 p.
Raslavičius, L.; Starevičius, M.; Keršys, A.; Pilkauskas, K.; Vilkauskas, A. 2013. Performance of an all-electric vehicle under UN ECE R101 test conditions: a feasibility study for the city of Kaunas, Lithuania, Lithuania, Energy 55: 436–448. https://doi.org/10.1016/j.energy.2013.03.050
Savitzky, A.; Golay, M. J. E. 1964. Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry 36(8): 1627–1639. https://doi.org/10.1021/ac60214a047
Spearman, C. 1904. The proof and measurement of association between two things, The American Journal of Psychology 15(1): 72–101. https://doi.org/10.2307/1412159
Tutuianu, M.; Bonnel, P.; Ciuffo, B.; Haniu, T.; Ichikawa, N.; Marotta, A.; Pavlovic, J.; Steven, H. 2015. Development of the world-wide harmonized light duty test cycle (WLTC) and a possible pathway for its introduction in the European legislation, Transportation Research Part D: Transport and Environment 40: 61–75. https://doi.org/10.1016/j.trd.2015.07.011