Analysis of external costs of CO2 emissions for CNG buses in intercity bus service
Abstract
Within the transport sector, road transport is the largest source of Carbon Dioxide (CO2) emissions. Greater use of vehicles that run on clean alternative fuels can contribute to reduce CO2 emissions. This paper gives special attention to the Compressed Natural Gas (CNG) buses and their comparison with conventional diesel buses, which in countries such as Serbia have a dominant share. Justification of using CNG buses in order to mitigate climate changes is measured by realised annual and average external costs of CO2 emissions. These external costs provide a basis for future use of economic instruments by which negative impacts of transport on the environment can be limited. Research of CO2 emissions and external costs of CO2 emissions in intercity bus service was conducted for three technical-technological concepts of CNG buses in comparison to the two types of conventional diesel buses. Analysis was carried out according to four various scenarios that define different operating conditions on the road network of the Serbia. Obtained results show that CNG buses reduce annual external costs of CO2 emissions by 2…24% compared to conventional diesel buses. Obtained average external costs of CO2 emissions per 100 bus-kms show to what extent their changes are a result of changes of external costs of CO2 emissions and to what extent they are due to changes of operating conditions on the road network.
Keyword : CNG bus, diesel bus, CO2 emission, external cost, intercity bus service, road network
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Andrejszki, T.; Torok, A.; Molnar, E. 2014. The long-term forecast of land passenger transport related CO2 emission and energy use in Hungary, International Journal for Traffic and Transport Engineering 4(4): 386–396. https://doi.org/10.7708/ijtte.2014.4(4).03
Chan, S.; Miranda-Moreno, L. F.; Alam, A.; Hatzopoulou, M. 2013. Assessing the impact of bus technology on greenhouse gas emissions along a major corridor: a lifecycle analysis, Transportation Research Part D: Transport and Environment 20: 7–11. https://doi.org/10.1016/j.trd.2013.01.004
Düsterwald, H. G.; Günnewig, J.; Radtke, P. 2007. DRIVE – the future of automotive power: fuel cells perspective, Fuel Cells 7(3): 183–189. https://doi.org/10.1002/fuce.200600040
Engerer, H.; Horn, M. 2010. Natural gas vehicles: an option for Europe, Energy Policy 38(2): 1017–1029. https://doi.org/10.1016/j.enpol.2009.10.054
Italferr S.p.A. 2009. General Master Plan for Transport in Serbia. Final Report 05SER01/04/016. A project implemented by Italferr S.p.A. in association with IIPP, NEA and Witteveen+Bos. 189 p.
Grote, K.-H.; Antonsson, E. K. 2009. Springer Handbook of Mechanical Engineering. Springer. 1580 p. https://doi.org/10.1007/978-3-540-30738-9
GVR. 2015. Gas Vehicles Report 14(167): 1–24. Available from Internet: http://www.ngvjournal.com/wp-content/uploads/ 2015/12/GVR167DecWEBnuevaOK.pdf
Hekkert, M. P.; Hendriks, F. H. J. F.; Faaij, A. P. C.; Neelis, M. L. 2005. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development, Energy Policy 33(5): 579–594. https://doi.org/10.1016/j.enpol.2003.08.018
Hesterberg, T. W.; Lapin, C. A.; Bunn, W. B. 2008. A comparison of emissions from vehicles fueled with diesel or compressed natural gas, Environmental Science & Technology 42(17): 6437–6445. https://doi.org/10.1021/es071718i
IEA. 2014. CO2 Emissions from Fuel Combustion: Highlights. International Energy Agency (IEA), Paris, France. 136 p. Available from Internet: http://wedocs.unep.org/handle/20.500.11822/9353
IPCC. 2013. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley (Eds.). The Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 p. Available from Internet: https://www.ipcc.ch/report/ar5/wg1
Ivković, I.; Janjoš, Ž.; Milovanović, B.; Žeželj, S. 2012. Fuel consumption analysis of CNG and hybrid buses on a road network, in Proceedings of International Conference on Traffic and Transport Engineering, 29–30 November, Belgrade, Serbia, 227–242.
Jayaratne, E. R.; Ristovski, Z. D.; Morawska, L.; Meyer, N. K. 2010. Carbon dioxide emissions from diesel and compressed natural gas buses during acceleration, Transportation Research Part D: Transport and Environment 15(5): 247–253. https://doi.org/10.1016/j.trd.2010.03.005
Kuzović, L. 1994. Vrednovanje u upravljanju razvojem i eksploatacijom putne mreže. Univerzitet u Beogradu, Beograd, Srbija. 274 s. (in Serbian).
Lowell, D. M.; Parsley, W.; Bush, C.; Zupo, D. 2003. Comparison of Clean Diesel Buses to CNG Buses. MTA New York City Transit, Department of Buses, Research & Development, US. 50 p. Available from Internet: https://www.osti.gov/biblio/829622
MacLean, H. L.; Lave, L. B. 2000. Environmental implications of alternative-fueled automobiles: air quality and greenhouse gas tradeoffs, Environmental Science & Technology 34(2): 225–231. https://doi.org/10.1021/es9905290
Maibach, M.; Schreyer, C.; Sutter, D.; Van Essen, H. P.; Boon, B. H.; Smokers, R.; Schroten, A.; Doll, C.; Pawlowska, B.; Bak, M. 2008. Handbook on Estimation of external Costs in the Transport Sector. CE Delft, The Netherlands, 336 p. Available from Internet: https://ec.europa.eu/transport/sites/transport/files/themes/sustainable/doc/2008_costs_handbook.pdf
Nanaki, E. A.; Koroneos, C. J.; Xydis, G. A.; Rovas, D. 2014. Comparative environmental assessment of Athens urban buses – diesel, CNG and biofuel powered, Transport Policy 35: 311–318. https://doi.org/10.1016/j.tranpol.2014.04.001
Park, S.-A.; Tak, H. 2012. The environmental effects of the CNG bus program on metropolitan air quality in Korea, Annals of Regional Science 49(1): 261–287. https://doi.org/10.1007/s00168-011-0439-3
Pelkmans, L.; De Keukeleere, D.; Bruneel, H.; Lenaers, G. 2001. Influence of vehicle test cycle characteristics on fuel consumption and emissions of city buses, SAE Technical Paper 2001-01-2002. https://doi.org/10.4271/2001-01-2002
Ryan, F.; Caulfield, B. 2010. Examining the benefits of using bio-CNG in urban bus operations, Transportation Research Part D: Transport and Environment 15(6): 362–365. https://doi.org/10.1016/j.trd.2010.04.002
Schipper, L.; Fabian, H.; Leather, J. 2009. Transport and Carbon Dioxide Emissions: Forecasts, Options Analysis, and Evaluation. Asian Development Bank, Manila, Philippines. 62 p. Available from Internet: https://www.adb.org/publications/transport-and-carbon-dioxide-emissions-forecasts-options-analysis-and-evaluation
Stevanović, A. 2003. Iskustva sa korišćenjem prirodnog gasa kao pogonskog goriva u Srbiji, u Zborniku Regionalne stručne konferencije I izložbe Vozila na prirodni gas u Jugoistočnoj Evropi: izazov i šansa za sve, 13–14 Oktobar, Sarajevo, Bosna i Hercegovina, 1–5. (in Serbian).
Wang, A.; Ge, Y.; Tan, J.; Fu, M.; Shah, A. N.; Ding, Y.; Zhao, H.; Liang, B. 2011. On-road pollutant emission and fuel consumption characteristics of buses in Beijing, Journal of Environmental Sciences 23(3): 419–426. https://doi.org/10.1016/S1001-0742(10)60426-3
Wang-Helmreich, H.; Lochner, S. 2012. The potential of natural gas as a bridging technology in low-emission road transportation in Germany, Thermal Science 16(3): 729–746. https://doi.org/10.2298/tsci120131125w
Zhang, S.; Wu, Y.; Hu, J.; Huang, R.; Zhou, Y.; Bao, X.; Fu, L.; Hao, J. 2014. Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOx emissions? New evidence from on-road tests of buses in China, Applied Energy 132: 118–126. https://doi.org/10.1016/j.apenergy.2014.07.008