Share:


Mathematical modelling of indicative process parameters of dual-fuel engines with conventional fuel injection system

Abstract

Modern engine research uses multi-dimensional Mathematical Models (MMs) that are applicable to multi-fuel engines. However, their use involves the availability of detailed technical data on the design and characteristics of the engine, which is not always possible. The use of a one-dimensional MM is more expedient for the prediction of engine parameters, but their application for this purpose has not yet been sufficiently investigated. This publication presents the results of numerical studies evaluating the application of a one-dimensional MM with bi-phase Vibe combustion laws for dual-fuel (DF) Diesel (D) and Natural Gas (NG) engine power parameters. The motor test results of a high-speed 4ČN79.5/95.5 Diesel Engine (DE) with a conventional fuel injection system were used as adequacy criteria. The engines were operated with D100 and DF D20/NG80, in high- (HLM), medium- (MLM), and low- (LLM) load modes, and the angle of Diesel-fuel Injection Timing (DIT) was changed from −1 to −13 °CA in the Before Top Dead Center (BTDC) range. Modelling of the single-phase Vibe combustion law has limited applicability for efficient use only in HLM (with an error of 7%). In the MLM and LLM regimes, owing to non-compliance with real bi-phasic combustion with a strongly extended NG diffusive second phase, the modelling error is 50%. Individual MM matching in MLM and LLM in a DF D20/NG80 experiment detected a burn time increase from between 45 and 50 °CA, to 110 and 200 °CA, respectively. Limited use of the one-dimensional MM in the evaluation of DF engine performance has been identified. When comparing a one-dimensional MM with experimental data, a bi-phase law of heat release characteristic should be considered for better coincidence. In addition, individual MM matching with an experiment on each engine load mode ensured acceptable accuracy in testing and optimising the parameters of the indicator process, including DIT.

Keyword : one-dimensional mathematical model, dual-fuel engine, energy indicators, heat release characteristic, single-phase combustion, bi-phase combustion

How to Cite
Lebedevas, S., Pukalskas, S., & Daukšys, V. (2020). Mathematical modelling of indicative process parameters of dual-fuel engines with conventional fuel injection system. Transport, 35(1), 57-67. https://doi.org/10.3846/transport.2020.12212
Published in Issue
Mar 16, 2020
Abstract Views
825
PDF Downloads
650
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abagnale, C.; Cameretti, M. C.; De Simio, L.; Gambino, M.; Iannaccone, S.; Tuccillo, R. 2014. Numerical simulation and experimental test of dual fuel operated diesel engines, Applied Thermal Engineering 65(1–2): 403–417. https://doi.org/10.1016/j.applthermaleng.2014.01.040

Anderson, M.; Salo, K.; Fridell, E. 2015. Particle- and gaseous emissions from an LNG powered ship, Environmental Science & Technology 49(20): 12568–12575. https://doi.org/10.1021/acs.est.5b02678

Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F. 2010. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe, Applied Energy 87(6): 2005–2013. https://doi.org/10.1016/j.apenergy.2009.11.012

Bosch, R. 2002. Dieselmotor-Management. Vieweg+Teubner Verlag, Wiesbaden GmbH. 479 S. https://doi.org/10.1007/978-3-322-99413-4 (in German).

Breitbach, H. 2002. Fuel Injection Systems Overview. Delphi Corporation, Gillingham, UK.

Bulaty, T.; Glanzmann, W. 1984. Bestimmung der Wiebe-Verbrennungsparameter, MTZ – Motortechnische Zeitschrift 45(7–8): 299–303. (in German).

Carlucci, A. P.; Laforgia, D.; Saracino, R. 2009. Effects of in-cylinder bulk flow and methane supply strategies on charge stratification, combustion and emissions of a dual-fuel DI diesel engine, SAE Technical Paper 2009-01-0949. https://doi.org/10.4271/2009-01-0949

EC. 2018. Transport in the European Union: Current Trends and Issues. European Commission (EC). 144 p. Available from Internet: https://ec.europa.eu/transport/sites/transport/files/2018-transport-in-the-eu-current-trends-and-issues.pdf

EN 590:2013+A1:2017. Automotive Fuels. Diesel. Requirements and Test Methods.

García Valladolid, P.; Tunestål, P.; Monsalve-Serrano, J.; García, A.; Hyvönen, J. 2017. Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine, Energy Conversion and Management 149: 192–205. https://doi.org/10.1016/j.enconman.2017.07.023

Heider, G. 1996. Rechenmodell zur Vorausrechnung der NO-Emission von Dieselmotoren. Dissertation. Technische Universität München, Deutschland. 144 S. (in German).

Heider, G.; Woschni, G.; Zeilinger, K. 1998. 2-Zonen Rechen-modell zur Vorausrechnung der NO-Emission von Dieselmotoren, MTZ – Motortechnische Zeitschrift 59(11): 770–775. https://doi.org/10.1007/BF03226479 (in German).

HoC. 2012. Sulphur Emissions by Ships. Sixteenth Report of Session 2010–12. Volume II. Additional Written Evidence. House of Commons (HoC), Transport Committee, London, UK. 35 p. Available from Internet: https://publications.parliament.uk/pa/cm201012/cmselect/cmtran/1561/1561vw.pdf

Hosmath, R. S.; Banapurmath, N. R.; Khandal, S. V.; Gaitonde, V. N.; Basavarajappa, Y. H.; Yaliwal, V. S. 2016. Effect of compression ratio, CNG flow rate and injection timing on the performance of dual fuel engine operated on honge oil methyl ester (HOME) and compressed natural gas (CNG), Renewable Energy 93: 579–590. https://doi.org/10.1016/j.renene.2016.03.010

IMO. 2019a. Greenhouse Gas Emissions. International Maritime Organization (IMO). Available from Internet: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/GHG-Emissions.aspx

IMO. 2019b. Prevention of Air Pollution from Ships. International Maritime Organization (IMO). Available from Internet: http://www.imo.org/en/OurWork/Environment/Pollution-Prevention/AirPollution/Pages/Air-Pollution.aspx

IMO. 2016. Studies on the Feasibility and Use of LNG as a Fuel for Shipping. International Maritime Organization (IMO). 290 p. Available from Internet: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/LNG%20Study.pdf

ISO 6976:2016. Natural Gas – Calculation of Calorific Values, Density, Relative Density and Wobbe Indices from Composition.

Ivanchenko, N. N.; Krasovskij, O. G.; Sokolov, S. S. 1983. Vysokij nadduv dizelej. Leningrad: Mashinostroenie. 198 s. (in Russian).

Janbozorgi, M.; Ugarte, S.; Metghalchi, H.; Keck, J. C. 2009. Combustion modeling of mono-carbon fuels using the rate-controlled constrained-equilibrium method, Combustion and Flame 156(10): 1871–1885. https://doi.org/10.1016/j.combustflame.2009.05.013

Kakaee, A.-H.; Rahnama, P.; Paykani, A. 2015. Influence of fuel composition on combustion and emissions characteristics of natural gas/diesel RCCI engine, Journal of Natural Gas Science and Engineering 25: 58–65. https://doi.org/10.1016/j.jngse.2015.04.020

Kavtaradze, R. Z. 2008. Teorija porshnevyh dvigatelej: Special’nye glavy. Moskva: MGTU im. N. Je. Baumana. 720 s. (in Russian).

Lebedev, S. V.; Lebedeva, G. V.; Matievskij, D. D.; Reshetov V. I. 2003. Formirovanie konstruktivnogo rjada porshnej dlja tipazha vysokooborotnyh forsirovannyh dizelej. Altajskij gosudarstvennyj tehnicheskij universitet im. I. I. Polzunova, Barnaul, Rossija. 89 s. (in Russian).

Lebedevas, S.; Pukalskas, S.; Daukšys, V.; Rimkus, A.; Melaika, M.; Jonika, L. 2019. Research on fuel efficiency and emissions of converted diesel engine with conventional fuel injection system for operation on natural gas, Energies 12(12): 2413. https://doi.org/10.3390/en12122413

Li, W.; Liu, Z.; Wang, Z. 2016. Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine, Energy 94: 728–741. https://doi.org/10.1016/j.energy.2015.11.052

Liu, J.; Zhang, X.; Wang, T.; Zhang, J.; Wang, H. 2015. Experimental and numerical study of the pollution formation in a diesel/CNG dual fuel engine, Fuel 159: 418–429. https://doi.org/10.1016/j.fuel.2015.07.003

Maghbouli, A.; Saray, R. K.; Shafee, S.; Ghafouri, J. 2013. Numerical study of combustion and emission characteristics of dual-fuel engines using 3D-CFD models coupled with chemical kinetics, Fuel 106: 98–105. https://doi.org/10.1016/j.fuel.2012.10.055

Maurya, R. K.; Mishra, P. 2017. Parametric investigation on combustion and emissions characteristics of a dual fuel (natural gas port injection and diesel pilot injection) engine using 0-D SRM and 3D CFD approach, Fuel 210: 900–913. https://doi.org/10.1016/j.fuel.2017.09.021

Merker, G.; Schwarz, C.; Stiesch, G.; Otto, F. 2006. Simulating Combustion: Simulation of Combustion and Pollutant Formation for Engine-Development. Springer. 402 p. https://doi.org/10.1007/3-540-30626-9

Mustafi, N. N.; Raine, R. R.; Verhelst, S. 2013. Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels, Fuel 109: 669–678. https://doi.org/10.1016/j.fuel.2013.03.007

Nithyanandan, K.; Lin, Y.; Donahue, R.; Meng, X.; Zhang, J.; Lee, C.-F. F. 2016. Characterization of soot from diesel-CNG dual-fuel combustion in a CI engine, Fuel 184: 145–152. https://doi.org/10.1016/j.fuel.2016.06.028

Papagiannakis, R. G.; Rakopoulos, C. D.; Hountalas, D. T.; Rakopoulos, D. C. 2010. Emission characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of natural gas/diesel fuel proportions, Fuel 89(7): 1397–1406. https://doi.org/10.1016/j.fuel.2009.11.001

Rapalis, P.; Lebedeva, G.; Gudaitytė, I. 2013. Comparative analysis of diesel engine mathematical modelling packages for practical use on transport diesel engine operating on biodiesel, in Transbaltica 2013: the 8th International Conference: Selected Papers, 9–10 May 2013, Vilnius, Lithuania, 173–178. https://doi.org/10.3846/transbaltica2013.038

Rimkus, A.; Berioza, M.; Melaika, M.; Juknelevičius, R.; Bogdanovičius, Z. 2016. Improvement of the compression-ignition engine indicators using dual fuel (diesel and liquefied petroleum gas), Procedia Engineering 134: 30–39. https://doi.org/10.1016/j.proeng.2016.01.035

Rimkus, A.; Melaika, M.; Matijošius, J. 2017. Efficient and ecological indicators of CI engine fuelled with different diesel and LPG mixtures, Procedia Engineering 187: 504–512. https://doi.org/10.1016/j.proeng.2017.04.407

Thomson, H.; Corbett, J. J.; Winebrake, J. J. 2015. Natural gas as a marine fuel, Energy Policy 87: 153–167. https://doi.org/10.1016/j.enpol.2015.08.027

Wang, T.; Zhang, X.; Zhang, J.; Hou, X. 2017. Numerical analysis of the influence of the fuel injection timing and ignition position in a direct-injection natural gas engine, Energy Conversion and Management 149: 748–759. https://doi.org/10.1016/j.enconman.2017.03.004

Yousefi, A.; Birouk, M.; Guo, H. 2017. An experimental and numerical study of the effect of diesel injection timing on natural gas/diesel dual-fuel combustion at low load, Fuel 203: 642–657. https://doi.org/10.1016/j.fuel.2017.05.009

Yousefi, A.; Birouk, M.; Lawler, B.; Gharehghani, A. 2015. Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels, Energy Conversion and Management 106: 322–336. https://doi.org/10.1016/j.enconman.2015.09.056

Zhang, C.; Zhou, A.; Shen, Y.; Li, Y.; Shi, Q. 2017. Effects of combustion duration characteristic on the brake thermal efficiency and NOx emission of a turbo diesel engine fueled with diesel-LNG dual-fuel, Applied Thermal Engineering 127: 312–318. https://doi.org/10.1016/j.applthermaleng.2017.08.034