Fuzzy TOPSIS in selecting logistic handling operator: case study from Poland
Abstract
Reliable and effective selection of logistic handling operator is a particularly demanding process due to the short reaction time or high level of accompanying stress. Moreover, diversification of transported cargo makes use of classical indicators and methods of carrier selection highly unsatisfactory for decision-makers. To solve this problem, managers are seeking multi-criteria decision methods that improve the decision-making process related to the selection of the carrier and reduce the risk indicator related to the incorrect implementation of the transport order. Thus, in this paper, we present a Multi-Criteria Decision-Making (MCDM) approach for selecting logistic handling operators under partial or incomplete information (uncertainty) and taking into account the different type of transported cargo. The proposed approach comprises 2 main steps. In the 1st step, we identify the input parameters, mainly connected with criteria for carrier selection depending on the type of transported cargo. In the 2nd step, experts provide linguistic ratings to the potential alternatives against the selected criteria and the best alternative is chosen. At this stage, the fuzzy Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) approach is used. Later, the applicability of the developed method is presented based on the chosen case company. The comparison of classical and fuzzy approaches to decision-making process is also given.
Keyword : multi-criteria decision-making (MCDM), fuzzy TOPSIS, fuzzy theory, carrier selection, cargo type, uncertainty
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Amoozad Mahdiraji, H.; Beheshti, M.; Razavi Hajiagha, S. H.; Zavadskas, E. K. 2018. A fuzzy binary bi objective transportation model: Iranian steel supply network, Transport 33(3): 810–820. https://doi.org/10.3846/transport.2018.5800
Anthony, P.; Behnoee, B.; Hassanpour, M.; Pamucar, D. 2019. Financial performance evaluation of seven Indian chemical companies, Decision-making: Applications in Management and Engineering 2(2): 81–99.
Antucheviciene, J.; Kala, Z.; Marzouk, M.; Vaidogas, E. R. 2015. Solving civil engineering problems by means of fuzzy and stochastic MCDM methods: current state and future research, Mathematical Problems in Engineering 2015: 362579. https://doi.org/10.1155/2015/362579
Asemi, Ad.; Bin Baba, M. S.; Asemi. As.; Haji Abdullah, R. B.; Idris, N. 2014. Fuzzy multi criteria decision-making applications: a review study, in Proceedings of the 3rd International Conference on Computer Engineering & Mathematical Sciences (ICCEMS 2014), 4–5 December 2014, Langkawi, Malaysia, 344–351.
Awasthi, A.; Chauhan, S. S.; Omrani, H. 2011. Application of fuzzy TOPSIS in evaluating sustainable transportation systems, Expert Systems with Applications 38(10): 12270–12280. https://doi.org/10.1016/j.eswa.2011.04.005
Baker, G. H. 1984. The carrier elimination decision: implications for motor carrier marketing, Transportation Journal 24(1): 20–29. Available from Internet: https://www.jstor.org/stable/20712793
Behzadian, M.; Kazemzadeh, R. B.; Albadvi, A.; Aghdasi, M. 2010. PROMETHEE: a comprehensive literature review on methodologies and applications, European Journal of Operational Research 200(1): 198–215. https://doi.org/10.1016/j.ejor.2009.01.021
Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. 2012. A state-of the-art survey of TOPSIS applications, Expert Systems with Applications 39(17): 13051–13069. https://doi.org/10.1016/j.eswa.2012.05.056
Buckley, J. J. 1985. Fuzzy hierarchical analysis, Fuzzy Sets and Systems 17(3): 233–247. https://doi.org/10.1016/0165-0114(85)90090-9
Cadena, P. C. B.; Magro, J. M. V. 2015. Setting the weights of sustainability criteria for the appraisal of transport projects, Transport 30(3): 298–306. https://doi.org/10.3846/16484142.2015.1086890
Carlsson, C.; Fullér, R. 1996. Fuzzy multiple criteria decision-making: recent developments, Fuzzy Sets and Systems 78(2): 139–153. https://doi.org/10.1016/0165-0114(95)00165-4
Celik, E.; Gul, M.; Yucesan, M.; Mete, S. 2019. Stochastic multi-criteria decision-making: an overview to methods and applications, Beni-Suef University Journal of Basic and Applied Sciences 8: 4. https://doi.org/10.1186/s43088-019-0005-0
Chaghooshi, A. J.; Hajimaghsoudi, M. 2014. Reducing the risk of transportation disruption in supply chain: integration of fuzzy-AHP and TOPSIS, Global Journal of Management Studies and Researches 1(1): 1–9. Available from Internet: https://academicjournalscenter.org/index.php/GJMSR/article/download/8/pdf_6
Charnes, A.; Cooper, W. W.; Rhodes, E. 1978. Measuring the efficiency of decision-making units, European Journal of Operational Research 2(6): 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Chatterjee, P.; Stević, Ž. 2019. A two-phase fuzzy AHP – fuzzy TOPSIS model for supplier evaluation in manufacturing environment, Operational Research in Engineering Sciences: Theory and Applications 2(1): 72–90.
Chen, C.-T. 2000. Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems 114(1): 1–9. https://doi.org/10.1016/S0165-0114(97)00377-1
Coyle, J. J.; Bardi, E. J.; Langley, C. J. 2003. Management of Business Logistics: a Supply Chain Perspective. 7th edition. South-Western College Pub. 707 p.
Dymova, L.; Sevastjanov, P.; Tikhonenko, A. 2013. An approach to generalization of fuzzy TOPSIS method, Information Sciences 238: 149–162. https://doi.org/10.1016/j.ins.2013.02.049
EC. 2007. The EU’s Freight Transport Agenda: Boosting the Efficiency, Integration and Sustainability of Freight Transport in Europe. Communication from the Commission. 18.10.2007, COM(2007), 606 Final. European Commission (EC), Brussels, Belgium. 7 p. Available from Internet: https://eur-lex.europa.eu/LexUriServ.do?uri=COM:2007:0606:FIN:EN:PDF
Edwards, W.; Barron, F. H. 1994. SMARTS and SMARTER: improved simple methods for multiattribute utility measurement, Organizational Behavior and Human Decision Processes 60(3): 306–325. https://doi.org/10.1006/obhd.1994.1087
El Yamani, O.; Mouncif, H.; Rida, M. 2014. A fuzzy TOPSIS approach for finding shortest path in multimodal transportation networks, International Journal of Computing and Optimization 1(2): 95–111. https://doi.org/10.12988/ijco.2014.4917
Figueira, J. R.; Greco, S.; Roy, B.; Słowiński, R. 2010. ELECTRE methods: main features and recent developments, Applied Optimization 103: 51–89. https://doi.org/10.1007/978-3-540-92828-7_3
Fishburn, P. C. 1967. Additive utilities with incomplete product sets: application to priorities and assignments, Operations Research 15(3): 537–542. https://doi.org/10.1287/opre.15.3.537
Fontela, E.; Gabus, A. 1976. The DEMATEL Observer. Institute, Geneva Research Center, Geneva, Switzerland.
ISO 22000:2018. Food Safety Management Systems.
Kabir, G.; Hasin, M. A. A. 2012. Comparative analysis of TOPSIS and fuzzy TOPSIS for the evaluation of travel website service quality, International Journal for Quality Research 6(3): 169–185. Available from Internet: http://www.ijqr.net/journal/v6-n3/1.pdf
Kacprzak, D. 2018. Przedziałowa metoda TOPSIS dla grupowego podejmowania decyzji, Optimum. Economic Studies (4): 256–273. (in Polish). https://doi.org/10.15290/oes.2018.04.94.19
Kacprzak, D.; Rudnik, K. 2016. Metoda AHP i rozmyta SAW oparta na skierowanych liczbach rozmytych w procesie wyboru trasy dostawy, in XIX Konferencja “Innowacje w Zarządzaniu i Inżynierii Produkcji”, 28 lutego – 1 marca 2016, Zakopane, Polska, 2: 71–84. (in Polish). Available from Internet: http://ptzp.org.pl/files/konferencje/kzz/artyk_pdf_2016/T2/t2_0071.pdf
Keršulienė, V.; Zavadskas, E. K.; Turskis, Z. 2010. Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA), Journal of Business Economics and Management 11(2): 243–258. https://doi.org/10.3846/jbem.2010.12
Kolios, A.; Mytilinou, V.; Lozano-Minguez, E.; Salonitis, K. 2016. A comparative study of multiple-criteria decision-making methods under stochastic inputs, Energies 9(7): 566. https://doi.org/10.3390/en9070566
Kosiński, W.; Prokopowicz, P. 2004. Algebra liczb rozmytych, Matematyka Stosowana (5): 37–63. (in Polish). Available from Internet: https://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/view/1237
Lwesya, F.; Jaffu, R. 2017. Customer service quality management in public transport: the case of rail transport in Tanzania, International Review 3–4: 102–117. https://doi.org/10.5937/intrev1704102L
Mardani, A.; Jusoh, A.; Zavadskas, E. K. 2015. Fuzzy multiple criteria decision-making techniques and applications – two decades review from 1994 to 2014, Expert Systems with Applications 42(8): 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003
Mardani, A.; Nilashi, M.; Zakuan, N.; Loganathan, N.; Soheilirad, S.; Saman, M. Z. M; Ibrahim, O. 2017a. A systematic review and meta-analysis of SWARA and WASPAS methods: theory and applications with recent fuzzy developments, Applied Soft Computing 57: 265–292. https://doi.org/10.1016/j.asoc.2017.03.045
Mardani, A.; Zavadskas, E. K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. 2017b. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency, Renewable and Sustainable Energy Reviews 70: 1298–1322. https://doi.org/10.1016/j.rser.2016.12.030
Mardani, A.; Zavadskas, E. K.; Khalifah, Z.; Zakuan, N.; Jusoh, A.; Nor, K. M.; Khoshnoudi, M. 2017c. A review of multi-criteria decision-making applications to solve energy management problems: two decades from 1995 to 2015, Renewable and Sustainable Energy Reviews 71: 216–256. https://doi.org/10.1016/j.rser.2016.12.053
Mardani, A.; Zavadskas, E. K.; Govindan, K.; Amat Senin, A.; Jusoh, A. 2016a. VIKOR technique: a systematic review of the state of the art literature on methodologies and applications, Sustainability 8(1): 37. https://doi.org/10.3390/su8010037
Mardani, A.; Zavadskas, E. K.; Khalifah, Z.; Jusoh, A.; Md Nor, K. 2016b. Multiple criteria decision-making techniques in transportation systems: a systematic review of the state of the art literature, Transport 31(3): 359–385. https://doi.org/10.3846/16484142.2015.1121517
Meixell, M. J.; Norbis, M. 2008. A review of the transportation mode choice and carrier selection literature, The International Journal of Logistics Management 19(2): 183–211. https://doi.org/10.1108/09574090810895951
Miljković, B.; Žižović, M. R.; Petojević, A.; Damljanović, N. 2017. New weighted sum model, Filomat 31(10): 2991–2998. https://doi.org/10.2298/FIL1710991M
Miller, D. W.; Starr, M. K. 1969. Executive Decisions and Operations Research. 2nd edition. Prentice-Hall, Inc.
Mohammaditabar, D.; Teimoury, E. 2008. Integrated freight transportation carrier selection and network flow assignment: methodology and case study, Journal of Applied Sciences 8(17): 2928–2938. https://doi.org/10.3923/jas.2008.2928.2938
Nădăban, S.; Dzitac, S.; Dzitac, I. 2016. Fuzzy TOPSIS: a general view, Procedia Computer Science 91: 823–831. https://doi.org/10.1016/j.procs.2016.07.088
Olson, D. L. 1996. Decision Aids for Selection Problems. Springer. 194 p. https://doi.org/10.1007/978-1-4612-3982-6
Osorio Gómez, J. C.; Manotas Duque, D. F. 2019. Fuzzy QFD and TOPSIS for dispatching prioritization in maritime transportation considering operational risk, in J. García Alcaraz, L. Rivera Cadavid, R. González-Ramírez, G. Leal Jamil, M. G. Chong Chong (Eds.). Best Practices in Manufacturing Processes, 97–116. https://doi.org/10.1007/978-3-319-99190-0_5
Perlman, Y.; Raz, T.; Moshka, L. 2009. Key factors in selecting an international freight forwarding company, The Open Transportation Journal 3: 29–34. https://doi.org/10.2174/1874447800903010029
Podvezko, V.; Sivilevičius, H. 2013. The use of AHP and rank correlation methods for determining the significance of the interaction between the elements of a transport system having a strong influence on traffic safety, Transport 28(4): 389–403. https://doi.org/10.3846/16484142.2013.866980
Putra, D. W. T.; Punggara, A. A. 2018. Comparison analysis of simple additive weighting (SAW) and weighted product (WP) in decision support systems, MATEC Web of Conferences 215: 01003. https://doi.org/10.1051/matecconf/201821501003
Roberts, K. W. 2012. Key Factors and Trends in Transportation Mode and Carrier Selection. Chancellor’s Honors Program Projects. University of Tennessee, Knoxville, TN, US. 58 p. Available from Internet: https://trace.tennessee.edu/utk_chanhonoproj/1497
Roszkowska, E.; Wachowicz, T. 2013. Metoda TOPSIS i jej rozszerzenia – studium metodologiczne, w T. Trzaskalik (Red.). Analiza Wielokryterialna: Wybrane Zagadnienia, 11–40. (in Polish).
Rudnik, K.; Kacprzak, D. 2017. Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system, Applied Soft Computing 52: 1020–1041. https://doi.org/10.1016/j.asoc.2016.09.027
Rudnik, K.; Kacprzak, D. 2015. Rozmyta metoda TOPSIS wykorzystująca skierowane liczby rozmyte, in XVIII Konferencja “Innowacje w Zarządzaniu i Inżynierii Produkcji”, 1–3 marca 2015, Zakopane, Polska, 1: 958–968. (in Polish). Available from Internet: http://www.ptzp.org.pl/files/konferencje/kzz/artyk_pdf_2015/T1/t1_0958.pdf
Saaty, T. L. 2005. Theory and Applications of the Analytic Network Process: Decision-making with Benefits, Opportunities, Costs, and Risks. 3rd edition. RWS Publications. 352 p.
Šakalys, R.; Sivilevičius, H.; Miliauskaitė, L.; Šakalys, A. 2019. Investigation and evaluation of main indicators impacting synchromodality using ARTIW and AHP methods, Transport 34(3): 300–311. https://doi.org/10.3846/transport.2019.9718
Shafiei Kaleibari, S.; Gharizadeh Beiragh, R.; Alizadeh, R.; Solimanpur, M. 2016. A framework for performance evaluation of energy supply chain by a compatible network data envelopment analysis model, Scientia Iranica: Transactions E: Industrial Engineering 23(4): 1904–1917. https://doi.org/10.24200/sci.2016.3936
Si, S.-L.; You, X.-Y.; Liu, H-C.; Zhang, P. 2018. DEMATEL technique: a systematic review of the state-of-the-art literature on methodologies and applications, Mathematical Problems in Engineering 2018: 3696457. https://doi.org/10.1155/2018/3696457
Simongáti, G. 2010. Multi‐criteria decision-making support tool for freight integrators: selecting the most sustainable alternative, Transport 25(1): 89–97. https://doi.org/10.3846/transport.2010.12
Solakivi, T.; Ojala, L. 2017. Determinants of carrier selection: updating the survey methodology into the 21st century, Transportation Research Procedia 25: 511–530. https://doi.org/10.1016/j.trpro.2017.05.433
Stević, Ž.; Tanackov, I.; Vasiljević, M.; Novarlić, B.; Stojić, G. 2016. An integrated fuzzy AHP and TOPSIS model for supplier evaluation, Serbian Journal of Management 11(1): 15–27. https://doi.org/10.5937/sjm11-10452
Subramanian, N.; Ramanathan, R. 2012. A review of applications of analytic hierarchy process in operations management, International Journal of Production Economics 138(2): 215–241. https://doi.org/10.1016/j.ijpe.2012.03.036
Sun, C.-C. 2010. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods, Expert Systems with Applications 37(12): 7745–7754. https://doi.org/10.1016/j.eswa.2010.04.066
Trzaskalik, T. 2014. Wielokryterialne wspomaganie decyzji. Przegląd metod i zastosowań, Zeszyty Naukowe Politechniki Śląskiej. Organizacja i Zarządzanie 74: 239–263. (in Polish).
Wao, J. O. 2018. Weighted product method in the value engineering process for construction project, International Journal of Scientific Research and Management 6(12): EC-2018-158-161. https://doi.org/10.18535/ijsrm/v6i12.ec03
Yu, D.; Wang, W.; Zhang, W.; Zhang, S. 2018. A bibliometric analysis of research on multiple criteria decision-making, Current Science 114(4): 747–758. https://doi.org/10.18520/cs/v114/i04/747-758
Zavadskas, E. K.; Antucheviciene, J.; Vilutiene, T.; Adeli H. 2018. Sustainable decision-making in civil engineering, construction and building technology, Sustainability 10(1): 14. https://doi.org/10.3390/su10010014
Zavadskas, E. K.; Antucheviciene, J.; Turskis, Z.; Adeli, H. 2016a. Hybrid multiple criteria decision-making methods: a review of applications in engineering, Scientia Iranica: Transactions A: Civil Engineering 23(1): 1–20. https://doi.org/10.24200/sci.2016.2093
Zavadskas, E. K.; Govindan, K.; Antucheviciene, J.; Turskis, Z. 2016b. Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues, Economic Research – Ekonomska Istraživanja 29(1): 857–887. https://doi.org/10.1080/1331677X.2016.1237302
Zavadskas, E. K.; Turskis, Z. 2010. A new additive ratio assessment (ARAS) method in multicriteria decision‐making, Technological and Economic Development of Economy 16(2): 159–172. https://doi.org/10.3846/tede.2010.10
Zavadskas, E. K.; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. 2012. Optimization of weighted aggregated sum product assessment, Elektronika ir Elektrotechnika 122(6): 3–6. https://doi.org/10.5755/j01.eee.122.6.1810
Zheng, J. H. 2015. A fuzzy TOPSIS approach based to evaluate the transportation mode selection: an experience in a suburban university, Advances in Transportation Studies 1 (Special Issue): 23–34.
Żak, J.; Fierek, S.; Kruszyński, M. 2014. Evaluation of different transportation solutions with the application of macro simulation tools and multiple criteria group decision-making/aiding methodology, Procedia – Social and Behavioral Sciences 111: 340–349. https://doi.org/10.1016/j.sbspro.2014.01.067