Share:


A multi-objective fuzzy optimization model for multi-type aircraft flight scheduling problem

    Ming Wei Affiliation
    ; Shangwen Yang Affiliation
    ; Wei Wu Affiliation
    ; Bo Sun Affiliation

Abstract

This study proposes a multi-objective optimization model for an Aircraft Flight Scheduling Problem (AFSP) for assigning a set of aircraft located at different airports to conduct all flight trips. The proposed model features each flight trip with its own special aircraft type and fuzzy flight time. Moreover, a flight trip with a small aircraft being covered by a larger one is fully accounted for in the model. The model can effectively reduce the number of aircraft and achieve the minimum total idle time for adjacent flight trips covered by an aircraft. A novel heuristic algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA-II) is further designed to yield meta-optimal solutions efficiently for such a Non-deterministic Polynomial (NP) problem. Finally, a real airline scheduling example in China is conducted using CPLEX and the proposed heuristic algorithm to evaluate the difference between the proposed and traditional models. The results show that the given scheduling problem effectively enhances the operational efficiency of the aircraft fleet.


First published online 28 January 2025

Keyword : aircraft flight scheduling, fuzzy flight time, heuristic algorithm, multiple aircraft type, multi-objective

How to Cite
Wei, M., Yang, S., Wu, W., & Sun, B. (2024). A multi-objective fuzzy optimization model for multi-type aircraft flight scheduling problem. Transport, 39(4), 313–322. https://doi.org/10.3846/transport.2024.20536
Published in Issue
Dec 31, 2024
Abstract Views
33
PDF Downloads
13
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abara, J. 1989. Applying integer linear programming to the fleet assignment problem, Interfaces 19(4): 20–28. https://doi.org/10.1287/inte.19.4.20

Abualigah, L. M. Q.; Hanandeh, E. S. 2015. Applying genetic algorithms to information retrieval using vector space model, International Journal of Computer Science, Engineering and Applications 5(1): 19–28. https://doi.org/10.5121/ijcsea.2015.5102

Badi, I.; Abdulshahed, A. 2019. Ranking the Libyan airlines by using full consistency method (FUCOM) and analytical hierarchy process (AHP), Operational Research in Engineering Sciences: Theory and Applications 2(1): 1–14. Available from Internet: https://oresta.org/menu-script/index.php/oresta/article/view/9

Bardenhagen, A.; Rakov, D. 2019. Advanced morphological approach in aerospace design during conceptual stage, Facta Universitatis, Series: Mechanical Engineering 17(3): 321–332. https://doi.org/10.22190/FUME180110005B

Barma, P. S.; Dutta, J.; Mukherjee, A. 2019. A 2-opt guided discrete antlion optimization algorithm for multi-depot vehicle routing problem, Decision Making: Applications in Management and Engineering 2(2): 112–125. https://doi.org/10.31181/dmame1902089b

Berge, M. E.; Hopperstad, C. A. 1993. Demand driven dispatch: a method for dynamic aircraft capacity assignment, models and algorithms, Operations Research 41(1): 153–168. https://doi.org/10.1287/opre.41.1.153

Cacchiani, V.; Salazar-González, J.-J. 2017. Optimal solutions to a real-world integrated airline scheduling problem, Transportation Science 51(1): 250–268. https://doi.org/10.1287/trsc.2015.0655

Cadarso, L.; De Celis, R. 2017. Integrated airline planning: robust update of scheduling and fleet balancing under demand uncertainty, Transportation Research Part C: Emerging Technologies 81: 227–245. https://doi.org/10.1016/j.trc.2017.06.003

Clarke, L. W.; Hane, C. A.; Johnson, E. L.; Nemhauser, G. L. 1996. Maintenance and crew considerations in fleet assignment, Transportation Science 30(3): 249–260. https://doi.org/10.1287/trsc.30.3.249

Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6(2): 182–197. https://doi.org/10.1109/4235.996017

Faust, O.; Gönsch, J.; Klein, R. 2017. Demand-oriented integrated scheduling for point-to-point airlines, Transportation Science 51(1): 196–213. https://doi.org/10.1287/trsc.2016.0693

Fry, D. G. 2015. Demand Driven Dispatch and Revenue Management. MSc Thesis. Massachusetts Institute of Technology, MA, US. 154 p. Available from Internet: https://dspace.mit.edu/handle/1721.1/99548

Gui, D.; Le, M.; Huang, Z.; D′Ariano, A. 2024. A decision support framework for aircraft arrival scheduling and trajectory optimization in terminal maneuvering areas, Aerospace 11(5): 405. https://doi.org/10.3390/aerospace11050405

Hane, C. A.; Barnhart, C.; Johnson, E. L.; Marsten, R. E.; Nemhauser, G. L.; Sigismondi, G. 1995. The fleet assignment problem: Solving a large-scale integer program, Mathematical Programming 70(1–3): 211–232. https://doi.org/10.1007/BF01585938

Huang, W.; Wang, W. J.; Bai, F. L.; Zhang, X. H. 2011. Study on optimization of multi-type aircraft scheduling robust model, Applied Mechanics and Materials 40–41: 347–353. https://doi.org/10.4028/www.scientific.net/AMM.40-41.347

Jamili, A. 2017. A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling, with consideration of fleet assignment problem, Journal of Air Transport Management 58: 21–30. https://doi.org/10.1016/j.jairtraman.2016.08.008

Jiang, H.; Barnhart, C. 2009. Dynamic airline scheduling, Transportation Science 43(3): 336–354. https://doi.org/10.1287/trsc.1090.0269

Kaucic, M.; Moradi, M.; Mirzazadeh, M. 2019. Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures, Financial Innovation 5: 26. https://doi.org/10.1186/s40854-019-0140-6

Kenan, N.; Jebali, A.; Diabat, A. 2018a. An integrated flight scheduling and fleet assignment problem under uncertainty, Computers & Operations Research 100: 333–342. https://doi.org/10.1016/j.cor.2017.08.014

Kenan, N.; Jebali, A.; Diabat, A. 2018b. The integrated aircraft routing problem with optional flights and delay considerations, Transportation Research Part E: Logistics and Transportation Review 118: 355–375. https://doi.org/10.1016/j.tre.2018.08.002

Lahooti Eshkevari, M.; Rashidi Komijan, A.; Baradaran, V. 2025. A flight-leg-based crew recovery model for disruptions management: a tabu search approach, International Journal of Research in Industrial Engineering (in press). https://doi.org/10.22105/riej.2025.468020.1456

Lalla-Ruiz, E.; Voß, S. 2020. A POPMUSIC approach for the multi-depot cumulative capacitated vehicle routing problem, Optimization Letters 14(3): 671–691. https://doi.org/10.1007/s11590-018-1376-1

Lan, S.; Clarke, J.-P.; Barnhart, C. C. 2006. Planning for robust airline operations: optimizing aircraft routings and flight departure times to minimize passenger disruptions, Transportation Science 40(1): 15–28. https://doi.org/10.1287/trsc.1050.0134

Li, K.; Chen, R.; Fu, G.; Yao, X. 2019. Two-archive evolutionary algorithm for constrained multiobjective optimization, IEEE Transactions on Evolutionary Computation 23(2): 303–315. https://doi.org/10.1109/TEVC.2018.2855411

Listes, O.; Dekker, R. 2005. A scenario aggregation-based approach for determining a robust airline fleet composition for dynamic capacity allocation, Transportation Science 39(3): 367–382. https://doi.org/10.1287/trsc.1040.0097

Pamucar, D.; Ćirović, G. 2018. Vehicle route selection with an adaptive neuro fuzzy inference system in uncertainty conditions, Decision Making: Applications in Management and Engineering 1(1): 13–37. https://doi.org/10.31181/dmame180113p

Petrović, D.; Puharić, M.; Kastratović, E. 2018. Defining of necessary number of employees in airline by using artificial intelligence tools, International Review 3(4): 77–89. https://doi.org/10.5937/IntRev1804077P

Roy, A.; Manna, A.; Maity, S. 2019. A novel memetic genetic algorithm for solving traveling salesman problem based on multi-parent crossover technique, Decision Making: Applications in Management and Engineering 2(2): 100–111. https://doi.org/10.31181/dmame1902076r

Rushmeier, R. A.; Kontogiorgis, S. A. 1997. Advances in the optimization of airline fleet assignment, Transportation Science 31(2): 159–169. https://doi.org/10.1287/trsc.31.2.159

Salazar-González, J.-J. 2014. Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier, Omega 43: 71–82. https://doi.org/10.1016/j.omega.2013.06.006

Sherali, H. D.; Bae, K.-H.; Haouari, M. 2013. A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture, Annals of Operations Research 210(1): 213–244. https://doi.org/10.1007/s10479-011-0906-3

Sherali, H. D.; Bish, E. K.; Zhu. X. 2005. Polyhedral analysis and algorithms for a demand-driven refleeting model for aircraft assignment, Transportation Science 39(3): 349–366. https://doi.org/10.1287/trsc.1040.0090

Sherali, H. D.; Zhu, X. 2008. Two-stage fleet assignment model considering stochastic passenger demands, Operations Research 56(2): 383–399. https://doi.org/10.1287/opre.1070.0476

Wei, M.; Chen, X.; Sun, B.; Zhu, Y.-Y. 2015. Model and algorithm for resolving regional bus scheduling problems with fuzzy travel times, Journal of Intelligent & Fuzzy Systems 29(6): 2689–2696. https://doi.org/10.3233/IFS-151972

Yang, Y.; Wei, G.; Zhou, B.; Zhang, X. 2011. Distribution network planning based on fuzzy expected value model, Transactions of China Electrotechnical Society 26(4): 200–207. (in Chinese).

Zhou, S.-Z.; Zhan, Z.-H.; Chen, Z.-G.; Kwong, S.; Zhang, J. 2020. A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction, IEEE Transactions on Intelligent Transportation Systems 22(11): 6784–6798. https://doi.org/10.1109/TITS.2020.2994779