Share:


Computer-aided simulation of unmanned aerial vehicle composite structure dynamics

    Artur Kierzkowski Affiliation
    ; Tomasz Kisiel Affiliation
    ; Maciej Milewski Affiliation
    ; Ádám Török Affiliation
    ; Michał Stosiak Affiliation
    ; Jakub Wróbel Affiliation

Abstract

The dynamic response of an aerial vehicle structure is a key parameter that must be determined before further aeroelastic phenomena can be analysed in the aerospace sector. Natural frequencies, mode shapes, and damping can be measured or predicted through experimental, operational, or computational studies. To reduce the costs and complexity of experimental investigations, there is a demand for numerical models that accurately represent the structure′s dynamic behaviour. This article focuses on modelling composite structures, which are increasingly utilised in the aerospace industry and whose dynamic properties are heavily influenced by fibre directionality. ANSYS software and the ACP module were employed to develop a numerical model of a wet Epoxy Carbon UD (230 GPa) composite commonly used in Unmanned Aerial Vehicle (UAV) components. Ten layers of 0.1 mm thick carbon fibre were incorporated into the model to create a 1 mm thick composite plate, with fibres oriented at 0°, 30°, 45°, and 90° relative to the horizontal direction of the plate. The simulations demonstrated that careful consideration and modelling of the material significantly impact the values of natural frequencies and, more importantly, the mode shapes.


First published online 28 January 2025

Keyword : unmanned aerial vehicle, modal analysis, composite, finite element method, vibration

How to Cite
Kierzkowski, A., Kisiel, T., Milewski, M., Török, Ádám, Stosiak, M., & Wróbel, J. (2024). Computer-aided simulation of unmanned aerial vehicle composite structure dynamics. Transport, 39(4), 302–312. https://doi.org/10.3846/transport.2024.23159
Published in Issue
Dec 31, 2024
Abstract Views
72
PDF Downloads
26
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Addcomposites. 2024. Composites in Urban Transport: Current Applications and Future Prospects. Addcomposites Oy, Espoo, Finland. Available from Internet: https://www.addcomposites.com/post/composites-in-urban-transport-current-applications-and-future-prospects

Anderson, K.; Gaston, K. J. 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology, Frontiers in Ecology and the Environment 11(3): 138–146. https://doi.org/10.1890/120150

ANSYS Inc. 2010. ANSYS Meshing User′s Guide: Release 13.0. ANSYS Inc., Canonsburg, PA, US. 350 p.

Bagdi, Z.; Csámer, L., Bakó, G. 2023. The green light for air transport: sustainable aviation at present, Cognitive Sustainability 2(2): 1–7. https://doi.org/10.55343/cogsust.55

Bishay, P. L.; Aguilar, C. 2021. Parametric study of a composite skin for a twist-morphing wing, Aerospace 8(9): 259. https://doi.org/10.3390/aerospace8090259

Bras, M.; Warwick, S.; Suleman, A. 2022. Aeroelastic evaluation of a flexible high aspect ratio wing UAV: numerical simulation and experimental flight validation, Aerospace Science and Technology 122: 107400. https://doi.org/10.1016/j.ast.2022.107400

Bubert, E. A.; Woods, B. K. S.; Lee, K.; Kothera, C. S.; Wereley, N. M. 2010. Design and fabrication of a passive 1D morphing aircraft skin, Journal of Intelligent Material Systems and Structures 21(17): 1699–1717. https://doi.org/10.1177/1045389X10378777

Bushnaq, O. M.; Mishra, D.; Natalizio, E.; Akyildiz, I. F. 2022. Unmanned aerial vehicles (UAVs) for disaster management, in A. Denizli, M. S. Alencar, T. A. Nguyen, D. E. Motaung (Eds.), Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention, 159–188. https://doi.org/10.1016/B978-0-323-91166-5.00013-6

Chajec, W. 2020. Aeroelastyczność samolotów i szybowców w praktyce. Biblioteka Naukowa Instytutu Lotnictwa, Warszawa. 311 s. (in Polish).

Chajec, W. 2018. Methods of modern aircraft aeroelastic analyses in the institute of aviation, Journal of KONES Powertrain and Transport 25(4): 33–42. Available from Internet: https://kones.eu/ep/2018/vol25/no4/33-42_J_O_KONES_2018_NO._4_VOL._25_ISSN_1231-4005_CHAJEC.pdf

Ciampa, E.; De Vito, L.; Pecce, M. R. 2019. Practical issues on the use of drones for construction inspections, Journal of Physics: Conference Series 1249: 012016. https://doi.org/10.1088/1742-6596/1249/1/012016

Colomina, I.; Molina, P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: a review, ISPRS Journal of Photogrammetry and Remote Sensing 92: 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

Dagilis, M.; Kilikevičius, S. 2023. Aeroelasticity model for highly flexible aircraft based on the vortex lattice method, Aerospace 10(9): 801. https://doi.org/10.3390/aerospace10090801

Davies, G. A. O.; Zhang, X. 1995. Impact damage prediction in carbon composite structures, International Journal of Impact Engineering 16(1): 149–170. https://doi.org/10.1016/0734-743X(94)00039-Y

Dinulović, M.; Bengin, A.; Krstić, B.; Dodić, M.; Vorkapić, M. 2024. Flutter optimization of carbon/epoxy plates based on a fast tree algorithm, Aerospace 11(8): 636. https://doi.org/10.3390/aerospace11080636

Ewins, D. J. 2000. Modal Testing: Theory, Practice and Application. 2nd Edition. Wiley. 592 p.

Ficzere, P. 2022. The impact of the positioning of parts on the variable production costs in the case of additive manufacturing, Periodica Polytechnica Transportation Engineering 50(3): 304–308. https://doi.org/10.3311/PPtr.15827

Friswell, M. I.; Mottershead, J. E. 1995. Finite Element Model Updating in Structural Dynamics. Springer. 292 p. https://doi.org/10.1007/978-94-015-8508-8

Garrick, I. E.; Reed, W. H. 1981. Historical development of aircraft flutter, Journal of Aircraft 18(11): 897–912. https://doi.org/10.2514/3.57579

George, J. S.; Vasudevan, A.; Mohanavel, V. 2021. Vibration analysis of interply hybrid composite for an aircraft wing structure, Materials Today: Proceedings 37: 2368–2374. https://doi.org/10.1016/j.matpr.2020.08.078

Gibson, R. F. 2016. Principles of Composite Material Mechanics. 4th Edition. CRC Press. 700 p. https://doi.org/10.1201/b19626

Gondaliya, R.; Sypeck, D.; Zhu, F. 2016. Improving damage tolerance of composite sandwich structure subjected to low velocity impact loading: experimental analysis, in Proceedings of the American Society for Composites 2016 – Thirty-First Technical Conference on Composite Materials, 19–22 September 2016, Williamsburg, VA, US, 1–17. Available from Internet: https://www.dpi-proceedings.com/index.php/asc31/article/view/3128

Hausamann, D.; Zirnig, W.; Schreier, G.; Strobl, P. 2005. Monitoring of gas pipelines – a civil UAV application, Aircraft Engineering and Aerospace Technology 77(5): 352–360. https://doi.org/10.1108/00022660510617077

Herrick, K. 2000. Development of the unmanned aerial vehicle market: forecasts and trends, Air & Space Europe 2(2): 25–27. https://doi.org/10.1016/S1290-0958(00)80035-0

Hodges, D. H.; Pierce, G. A. 2011. Introduction to Structural Dynamics and Aeroelasticity. 2nd Edition. Cambridge University Press. 247 p. https://doi.org/10.1017/CBO9780511997112

ICAO. 2011. Unmanned Aircraft Systems (UAS). ICAO Cir 328. International Civil Aviation Organization (ICAO), Montreal, QC, Canada. 54 p. Available from Internet: https://www.icao.int/meetings/uas/documents/circular%20328_en.pdf

Kaw, A. K. 2005. Mechanics of Composite Materials. 2nd Edition. CRC Press. 490 p. https://doi.org/10.1201/9781420058291

Karpenko, M. 2022. Landing gear failures connected with high-pressure hoses and analysis of trends in aircraft technical problems, Aviation 26(3): 145–152. https://doi.org/10.3846/aviation.2022.17751

Karpenko, M.; Nugaras, J. 2022. Vibration damping characteristics of the cork-based composite material in line to frequency analysis, Journal of Theoretical and Applied Mechanics 60(4): 593–602. https://doi.org/10.15632/jtam-pl/152970

Karpenko, M.; Stosiak, M.; Deptuła, A.; Urbanowicz, K.; Nugaras, J.; Królczyk, G.; Żak, K. 2023. Performance evaluation of extruded polystyrene foam for aerospace engineering applications using frequency analyses, The International Journal of Advanced Manufacturing Technology 126(11–12): 5515–5526. https://doi.org/10.1007/s00170-023-11503-0

Kidane, B. S.; Troiani, E. 2020. Static aeroelastic beam model development for folding winglet design, Aerospace 7(8): 106. https://doi.org/10.3390/aerospace7080106

Kollár, L. P.; Springer G. S. 2003. Mechanics of Composite Structures. Cambridge University Press. 480 p. https://doi.org/10.1017/CBO9780511547140

Kontogiannis, S. G.; Ekaterinaris, J. A. 2013. Design, performance evaluation and optimization of a UAV, Aerospace Science and Technology 29(1): 339–350. https://doi.org/10.1016/j.ast.2013.04.005

Koottatep, T.; Winijkul, E.; Xue, W.; Panuvatvanich, A.; Visvanathan, C.; Pussayanavin, T.; Limphitakphong, N.; Polprasert, C. 2023. Marine Plastics Abatement: Technology, Management, Business and Future Trends. Volume 2. IWA Publishing. https://doi.org/10.2166/9781789063448

Koukoudakis, G. 2024. Drones′ contribution to the transformation of contemporary warfare, Journal of Military Studies 13(1): 24–32. https://doi.org/10.2478/jms-2024-0003

Kovalev, I. V.; Voroshilova, A. A.; Karaseva, M. V. 2019. Analysis of the current situation and development trend of the international cargo UAVs market, Journal of Physics: Conference Series 1399(5): 055095. https://doi.org/10.1088/1742-6596/1399/5/055095

Körpe, D. S.; Kanat, Ö. Ö. 2019. Aerodynamic optimization of a UAV wing subject to weight, geometric, root bending moment, and performance constraints, International Journal of Aerospace Engineering 2019: 3050824. https://doi.org/10.1155/2019/3050824

Lyu, M.; Zhao, Y.; Huang, C.; Huang, H. 2023. Unmanned aerial vehicles for search and rescue: a survey, Remote Sensing 15(13): 3266. https://doi.org/10.3390/rs15133266

Malinowski, Z. 2016. The role of unmanned aerial vehicles in the formation of a secure military supply chain, Security and Defence Quarterly 12(3): 19–45. https://doi.org/10.35467/sdq/103235

Mallick, P. K. 2007. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. 3rd Edition. CRC Press. 638 p. https://doi.org/10.1201/9781420005981

Nettles, A. T. 1994. Basic Mechanics of Laminated Composite Plates. NASA Reference Publication No 1351. National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), AL, US. 107 p. Available from Internet: https://ntrs.nasa.gov/api/citations/19950009349/downloads/19950009349.pdf

Noman, A. A.; Shohel, S. M.; Riyad, H. S.; Gupta, S. S. 2023. Investigate the mechanical strength of laminated composite carbon fiber with different fiber orientations by numerically using finite element analysis, Materials Today: Proceedings (in press). https://doi.org/10.1016/j.matpr.2023.02.132

Panopoulou, A.; Loutas, T.; Roulias, D.; Fransen, S.; Kostopoulos, V. 2011. Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures, Acta Astronautica 69(7–8): 445–457. https://doi.org/10.1016/j.actaastro.2011.05.027

Patil, M. J. 2003. Nonlinear aeroelastic analysis of joined-wing aircraft, in 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 7–10 April 2003, Norfolk, VA, US, 1–7. https://doi.org/10.2514/6.2003-1487

Pálfi, T.; Ficzere, P. 2025. Aerodynamic study of different types of wingtip devices, Periodica Polytechnica Transportation Engineering 53(1): 77–86. https://doi.org/10.3311/PPtr.37240

Piccione, E.; Bernardini, G.; Gennaretti, M. 2012. Structural‐aeroelastic finite element modeling for advanced‐geometry rotor blades, Aircraft Engineering and Aerospace Technology 84(6): 367–375. https://doi.org/10.1108/00022661211272873

Qaumi, T.; Hashemi, S. M. 2023. Experimental and numerical modal analysis of a composite rocket structure, Aerospace 10(10): 867. https://doi.org/10.3390/aerospace10100867

Rahmani, B.; Mortazavi, F.; Villemure, I.; Levesque, M. 2013. A new approach to inverse identification of mechanical properties of composite materials: regularized model updating, Composites Structures 105: 116–125. https://doi.org/10.1016/j.compstruct.2013.04.025

Rangappa, S. M.; Parameswaranpillai, J.; Siengchin, S.; Kroll, L. 2020. Lightweight Polymer Composite Structures: Design and Manufacturing Techniques. CRC Press. 410 p. https://doi.org/10.1201/9780429244087

Rango, A.; Laliberte, A.; Herrick, J. E.; Winters, C.; Havstad, K.; Steele, C.; Browning, D. 2009. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management, Journal of Applied Remote Sensing 3(1): 033542. https://doi.org/10.1117/1.3216822

Rose, R. A.; Byler, D.; Eastman, J. R.; Fleishman, E.; Geller, G.; Goetz, S.; Guild, L.; Hamilton, H.; Hansen, M.; Headley, R.; Hewson, J.; Horning, N.; Kaplin, B. A.; Laporte, N.; Leidner, A.; Leimgruber, P.; Morisette, J.; Musinsky, J.; Pintea, L.; Prados, A.; Radeloff, V. C.; Rowen, M.; Saatchi, S.; Schill, S.; Tabor, K.; Turner, W.; Vodacek, A.; Vogelmann, J.; Wegmann, M.; Wilkie, D.; Wilson, C. 2015. Ten ways remote sensing can contribute to conservation, Conservation Biology 29(2): 350–359. https://doi.org/10.1111/cobi.12397

Schaff, J. R.; Davidson, B. D. 1997. Life prediction methodology for composite structures. Part I – constant amplitude and two-stress level fatigue, Journal of Composite Materials 31(2): 128–157. https://doi.org/10.1177/002199839703100202

Siemens. 2022. Aircraft Ground Vibration Testing: Enhancing the Efficiency of Aircraft Structural Dynamics Testing. Siemens Digital Industries Software. 9 p. Available from Internet: https://www.plm.automation.siemens.com/media/global/en/Siemens%20SW%20Aircraft%20ground%20vibration%20testing%20White%20Paper_tcm27-84865.pdf

Silva, W. 2007. Recent enhancements to the development of CFD-based aeroelastic reduced-order models, in 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 23–26 April 2007, Honolulu, HI, US, 1–11. https://doi.org/10.2514/6.2007-2051

Stosiak, M.; Karpenko, M.; Deptuła, A. 2022. Coincidence of pressure pulsations with excitation of mechanical vibrations of hydraulic system components: an experimental study, Cognitive Sustainability 1(2): 12. https://doi.org/10.55343/cogsust.12

Tremaine, K. 2012. Modal Analysis of Composite Structures with Damping Material. MSc Thesis. California Polytechnic State University, San Luis Obispo, CA, US. 130 p. https://doi.org/10.15368/theses.2012.139

Weisshaar, T.; Nam, C.; Batista-Rodriguez, A. 1998. Aeroelastic tailoring for improved UAV performance, in 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 20–23 April 1998, Long Beach, CA, UA, 1–13. https://doi.org/10.2514/6.1998-1757

Zhang, C.; Kovacs, J. M. 2012. The application of small unmanned aerial systems for precision agriculture: a review, Precision Agriculture 13: 693–712. https://doi.org/10.1007/s11119-012-9274-5

Zrelli, I.; Rejeb, A.; Abusulaiman, R.; Al Sahafi, R.; Rejeb, K.; Iranmanesh, M. 2024. Drone applications in logistics and supply chain management: a systematic review using latent Dirichlet allocation, Arabian Journal for Science and Engineering 49(9): 12411–12430. https://doi.org/10.1007/s13369-023-08681-0