Share:


Assessment of defects in masonry walls for the residential buildings in Lithuania

    Lukas Gritėnas Affiliation
    ; Jolanta Tamošaitienė   Affiliation

Abstract

This paper presents the assessment of masonry wall defects in residential buildings in Lithuania. The created model is based on a multi-attribute evaluation of wall defects in residential buildings in Lithuania, the determination of their optimality criterion values calculated according to Laplace’o rule. The developed defect assessment algorithm has advantages to be used by repair contractors and people or companies performing building maintenance. First, the model allows planning the course of repair works properly. When carrying out repair work in a building with recurring defects that mainly occur at the building site, proper workflow and its planning are essential. The proposed model could be applied further to a building owner to select the most damaged walls. A background and a description of the proposed model are provided, and several key findings from the data analyses are presented.


First published online 11 January 2023

Keyword : masonry wall, defects, residential building, Laplace’o rule, priority line

How to Cite
Gritėnas, L., & Tamošaitienė, J. (2021). Assessment of defects in masonry walls for the residential buildings in Lithuania. Engineering Structures and Technologies, 13(1), 31–36. https://doi.org/10.3846/est.2021.18457
Published in Issue
Dec 30, 2021
Abstract Views
215
PDF Downloads
185
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Furtado, A., Rodrigues, H., Arêdea, A., Vasconcelos.G., & de Risi, M. T. (2022). Damage index model and hysteretic viscous damping of masonry infill walls subjected to out-of-plane loadings. Journal of Building Engineering, 50, 104196. https://doi.org/10.1016/j.jobe.2022.104196

Hatefi, S. M., & Tamosaitiene, J. (2019). An integrated fuzzy DEMATEL-fuzzy ANP model for evaluating construction projects by considering interrelationships among risk factors. Journal of Civil Engineering and Management, 25(2), 114–131. https://doi.org/10.3846/jcem.2019.8280

Hatefi, S. M., Basiri, M. E., & Tamošaitienė, J. (2019). An evidential model for environmental risk assessment in projects using Dempster–Shafer theory of evidence. Sustainability, 11(22), 1–16. https://doi.org/10.3390/su11226329

Juozaitienė, J. (2007, lapkritis). Daugiabučių gyvenamųjų pastatų padėtis Lietuvoje [konferencijos pranešimas]. Konferencija „Sąnaudos šildymui – valstybės ir vartotojų rankos“. Vilnius. https://www.lsta.lt/files/events/1_j.juozaitiene.ppt.pdf

Kvande, T., & Lisø, K. R. (2003). Regendichter Putz fur gemaurte Fassaden. Das Mauerwerk, (2), 59–65.

Kvande, T., & Lisø, K. R. (2009). Climate adapted design of masonry structures. Building and Enviroment, 44(12), 2442–2450. https://doi.org/10.1016/j.buildenv.2009.04.007

Lietuvos Respublikos aplinkos ministerija. (2016). Įsakymas Dėl statybos techninio reglamento STR 1.03.01:2016 „Statybiniai tyrimai. Statinio avarija“ patvirtinimo. Priedas Nr. 1. TAR, 2016-11-11, Nr. 26719. https://www.e-tar.lt/portal/lt/legalAct/a78c2780a80211e69ad4c8713b612d0f/boHtMTorVN

Martens, D. R.W., & Vermeltfoort, A. T. (2001). The mystery of movement joints in veneer walls. In 9th Canadian Masonry Symposium (pp. 1–13). University of New Brunswick.

Mohammed, A., & Hughes, T. G. (2011). Prototype and model masonry behaviour under different loading conditions. Materials and Structures, 44(1), 53–65. https://doi.org/10.1617/s11527-010-9608-6

Mohammed, A., Hughes, T. G., & Mustapha, A. (2011). The effect of scale on the structural behaviour of masonry under compression. Construction and Building Materials, 25(1), 303–307. https://doi.org/10.1016/j.conbuildmat.2010.06.025

Muresan, F. (2021). Masonry construction: Advantages and disadvantages.

Namazian, A., Yakhchali, S. H., Yousefi, V., & Tamošaitienė, J. (2019). Combining Monte Carlo simulation and Bayesian networks methods for assessing completion time of projects under risk. International Journal of Environmental Research and Public Health, 16(24), 1–19. https://doi.org/10.3390/ijerph16245024

Navas-Sanchez, L., & Bravo, J. C. (2022). A theory-based simplified trilinear model for characterisation of the out-of-plane behaviour of URM walls. Engineering Structures, 259, 114058. https://doi.org/10.1016/j.engstruct.2022.114058

Šlivinskas, T., Jonaitis, B., & Drobiec, Ł. (2016). Assessment of bed joints behavior of calcium silicate brick masonry during execution. Engineering Structures and Technologies, 8(4), 143–149. https://doi.org/10.3846/2029882X.2016.1238784

Zavadskas, E. K., Liias, R., & Turskis, Z. (2008). Multi-attribute decision-making methods for assessment of quality in bridges and road construction: State-of-the-art surveys. The Baltic Journal of Road and Bridge Engineering, 3(3), 152–160. https://doi.org/10.3846/1822-427X.2008.3.152-160

Zavadskas, E. K., Peldschus, F., Ustinovičius, L., & Turskis., Z. (2004). Lošimų teorija statybos technologijoje ir vadyboje. Technika.

Zavadskas, E. K., Ustinovičius, L., Turskis, Z., Peldschus, F., & Messing, D. (2002). LEVI 3.0–multiple criteria evaluation program for construction solutions. Journal of Civil Engineering and Management, 8(3), 184–191. https://doi.org/10.1080/13923730.2002.10531275